IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1979

Novel transition metal complexes with camphorquinoneoxime ligands

Man Sheung Ma Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Inorganic Chemistry Commons</u>

Recommended Citation

Ma, Man Sheung, "Novel transition metal complexes with camphorquinoneoxime ligands " (1979). *Retrospective Theses and Dissertations*. 7295. https://lib.dr.iastate.edu/rtd/7295

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
- 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106 18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND MA, MAN SHEUNG

.

.

NOVEL TRANSITION METAL COMPLEXES WITH CAMPHORQUINONEOXIME LIGANDS

Iowa State University

Рн.D. 1979

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

18 Bedford Row, London WC1R 4EJ, England

Novel transition metal complexes with

camphorquinoneoxime ligands

by

Man Sheung Ma

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

In Charge of/Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

TABLE OF CONTENTS

GENERAL INTRODUCTIO	ON	1			
Explanation of]	Dissertation Format	24			
SECTION I.	UNUSUAL COORDINATION OF THE α-DIOXIME LIGAND IN BIS- (CAMPHORQUINONE DIOXIMATO)- NICKEL(II)	5			
INTRODUCTION		6			
EXPERIMENTAL SECTION					
RESULTS AND DISCUSSION					
REFERENCES AND NOT	ES	18			
SECTION II.	NOVEL TRANSITION METAL COMPLEXES OF CAMPHORQUINONEDIOXIME LIGANDS	20			
INTRODUCTION		21			
EXPERIMENTAL SECTION					
RESULTS AND DISCUSSION					
CONCLUSION					
REFERENCES AND NOTES					

SECTION III.	COORDINATION CHEMISTRY OF BIS(δ -CAMPHORQUINONEDIOXIMATO) - Ni(II) AND Pd(II). REACTIONS AND STRUCTURAL STUDIES OF SOME MaAga CLUSTER COMPLEXES OF			
	CAMPHORQUINONEDIOXIME	64		
INTRODUCTION		65		
EXPERIMENTAL SECTIO	DN	66		
RESULTS AND DISCUSS	SION	83		
REFERENCES AND NOTE	ES	111		
SECTION IV.	CAMPHORQUINONE OXIME AND IMINE COMPLEXES OF NICKEL(II) AND ZINC(II)	113		
INTRODUCTION		114		
EXPERIMENTAL SECTIO	DN	116		
RESULTS AND DISCUSS	SION	120		
REFERENCES AND NOTE	CS	135		
SUMMARY		137		
LITERATURE CITED				
ACKNOWLEDGEMENTS		142		

GENERAL INTRODUCTION

Since the Russian chemist Chugaev¹ discovered the reaction of Ni(II) with dimethylglyoxime (H_2DMG) as shown in eq. 1, the chemistry of the metal dioximes has been

studied extensively. In almost all of the metal dioxime complexes, the deprotonated dioxime acts as a bidentate ligand coordinating to the metal through both nitrogen atoms.

In the past decade interest in the use of α -dioximes as selective analytical reagents² has shifted to areas where other applications of the metal dioximes are emphasized. These new areas include studies of these metal complexes as catalysts for asymmetric hydrogenation,³ as models⁴ for vitamin B₁₂, as anti-tumor agents⁵ and as semi-conducting materials.⁶

Our interest in this area evolved from previous studies of optically active ligands⁷ and a desire to prepare complexes with optically active α -dioxime ligands. Such a ligand is camphorquinonedioxime H₂CQD. It can exist in

four stable isomeric forms $\alpha,\ \beta,\ \gamma$ and δ^8 as shown below:

These isomers differ from one another by the orientation of the OH groups at the N atoms. One of the major concerns of the present work is the syntheses and characterizations of transition metal complexes of all isomers of H_2CQD .

While our work was in progress Nakamura et al.⁹ reported that cobalt(II) complexes of α , β and δ -isomers of H₂CQD catalyzed the cyclopropanation of olefins. More recently, they suggested that N,N as well as N,O coordination¹⁰ of these ligands occurred with Co(II), Ni(II) and Pd(II) metal ions. The varieties of H_2CQD metal complex formation have been much more fully explored as described in this dissertation.

We also observed an unusual reaction of $M(HCQD)_2$ complexes of Ni and Pd with Ag(I) to give cluster complexes. Previously Fe(III) was reported to react with methyl-(aquo)cobaloxime¹¹ to replace one bridging H atom in the planar Co(HDMG)₂⁺ unit. We find that Ag(I) yields cluster of six metal atoms supported by the HCQD⁻ ligands.

Since carbonyl-oxime ligands are usually poor coordinating agents¹² for Ni(II), another direction of the present work extends to the study of the coordination chemistry of isonitrosocamphor (HCQM) and isonitrosoepicamphor (HCQE) with Ni(II). In addition, the possible

HCQM

formation of Schiff base ligands of HCQE, HCQM and camphorquinone upon reaction with diaminopropane and metal ions was examined. These studies give further insight into the coordination behavior of this bicyclic type of ligand. Throughout the present work, the techniques employed include X-ray crystallography, ¹H and ¹³C NMR, IR, ultraviolet-visible and esr spectroscopy as well as magnetic moments and ionic conductivities, with X-ray crystallography being the most informative.

Explanation of Dissertation Format

This dissertation is written so that each section represents an article in a publishable form. For this reason the numbering scheme adopted for the figures and tables is independent in each section. References cited in the General Introduction and in the Summary will appear at the end under the heading Literature Cited. SECTION I. UNUSUAL COORDINATION OF THE α -DIOXIME LIGAND IN BIS(CAMPHORQUINONE DIOXIMATO)NICKEL(II)

.

INTRODUCTION

Metal complexes¹ of the dimethylglyoximate ligand (HDMG⁻) have served as models for vitamin B_{12} ,² have been shown to have some one-dimensional metallic properties,³ and have long been of importance in analytical chemistry.⁴ In all of the known structures, the HDMG⁻ ligand behaves as a bidentate ligand coordinating to the metal through both nitrogen atoms.

Our interest in these compounds evolved from previous studies of optically active ligands⁵ and a desire to prepare complexes with optically active α -dioxime ligands. We expected these complexes to have catalytic properties similar to those known for Co(HDMG)₂.⁶ The chosen ligand, γ -camphorquinone dioxime (H₂CQD), was prepared from <u>d</u>-camphor according to the procedures of Forster.⁷ Proton NMR studies⁸ and an X-ray structural study⁹ indicate that this γ -isomer has a <u>syn</u> structure with the following OH group orientations at the N atoms:

Recently, complexes of the α , β , and δ isomers of camphorquinone dioxime were reported to catalyze the cyclopropanation

б

of olefins, and it was suggested that these complexes had structures involving N,O as well as N,N ligand bonding.¹⁰

EXPERIMENTAL SECTION

The nickel(II) complex was prepared by mildly refluxing a MeOH solution of 0.64 mmol of Ni(NO₃)₂.6H₂O and 1.28 mmol of H₂CQD for 10 minutes. After adding 1.28 mmol of NaOMe in MeOH, the solution was refluxed for an additional 2 hours. Following filtration while warm, the solution was evaporated under vacuum to a green solid, which was dissolved in a minimum volume (~10 ml) of CH₃CN. The solution was filtered immediately and allowed to stand overnight whereupon reddish brown tetrahedral crystals of Ni(HCQD)₂ formed in 20% yield. Anal. ($C_{20}H_{30}N_4O_4Ni$) C,H,N.

A single tetrahedral crystal of Ni(HCQD)₂ about 0.4 mm on an edge was chosen for the X-ray diffraction study. The observed Lau'e symmetry and extinctions correspond to the orthorhombic space group $P_{2_1 2_1 2_1}$ with a = 13.175(1), b = 13.652(2), c = 12.031(3)Å, Z = 4 and pcalc = 1.378 g/ml. Four octants of data were collected on a four-circle diffractometer designed and built in the Ames Laboratory¹¹ using graphite monochromated Mo-K α X-rays ($\lambda = 0.70954$ Å) up to a 20 limit of 60°. Of the 11,562 measured intensities 7,923 were judged observed (I > 3.0 $\sigma_{\rm I}$). Correction for Lorentz and polarization effects and averaging of equivalent data yielded 2,253 independent reflections. No correction was applied for absorption and an extinction correction was

made with $g = 4.5 \times 10^{-7}$. The heavy atom was readily located on a Patterson map.¹² Full matrix least squares refinement¹³ of the structure with anisotropic thermal parameters and fixed hydrogen positions yielded a conventional residual R = 0.066 and a weighted residual R = 0.085. A computergenerated perspective view of the essential configuration of the ligand and the coordination sphere around the nickel atom is shown in Figure 1.

Figure 1. Computer-generated perspective drawing of Ni(HCQD)2.

RESULTS AND DISCUSSION

The 6-membered rings give the Ni atom an almost square planar configuration. The distances from Ni to 02, 04, Nl, and N3 are 1.820(4), 1.840(3), 1.859(4), and 1.851(4)Å, respectively. The HCQD⁻ ligand coordinates to the Ni <u>via</u> N and O donor atoms rather than the common N,N coordination characteristic of other α -dioxime ligands. We believe the reason for this coordination is the bicyclic nature of the ligand which causes the C-C-C angles at Cl2, Cl3, C22 and C23 to be 106.6(4), 105.1(4), 104.9(4) and 107.4(4)°, respectively, which are substantially smaller than found (121 and 124°) for the corresponding angles of Ni(HDMG)₂.¹⁴

The small magnitude of these angles presumably increases the C-C-N angles in the chelate ring to the point where formation of a larger ring by N,O coordination becomes more favorable. However, even in the 6-membered ring there appears to be some strain due to the sharp angle (94.2(2) and 93.9(2)°) at the Ni in the chelate ring. Thus all the following angles in the ring are larger than corresponding angles in Ni(HDMG)₂: (the given angle is listed first followed by the corresponding angle in the other ring) N3-C23-C22, 122.1(5), 122.9(5); N4-C22-C23, 132.0(5), 129.6(4); Ni-N3-C23, 124.8(4), 126.3(3)°. These unusually large angles suggest that the 6-membered chelate rings may

÷

also be strained. The delicate balance between N,O and N,N coordination in HCQD⁻ complexes is supported by the fact that we find the ligand to be N,N-coordinated in Cu(HCQD)₂. The now known existence of these two modes of bonding suggests that N,O-bonded forms may be present as intermediates in reactions of complexes of other α -dioxime ligands.

Although the Ol-O4 and O2-O3 distances (2.49 and 2.50Å) are not as short as those $(2.40Å)^{14}$ in Ni(HDMG)₂, it appears that some hydrogen bonding does occur. There are no short distances which permit intermolecular hydrogen bonding. The molecules pack in the unit cell such that the closest distance between Ni atoms in parallel complexes is one unit cell length (12.031Å) along the c axis. Thus there is no Ni-Ni interaction such as occurs in Ni(HDMG)₂.¹⁴

The infrared spectrum of Ni(HCQD)₂ taken in a KBr pellet shows a medium intensity absorption at 1690 cm⁻¹, an unusually high frequency uncharacteristic of N-bonded α -dioxime ligands.¹⁵ Deuteration studies indicate that the band is not associated with the OH group but presumably arises from a vibration which has considerable C=N stretching character. This absorption may allow easy identification of other complexes which contain α -dioxime ligands coordinated <u>via</u> their N and O atoms.

Table	I.	Final	atomic	parameters
-------	----	-------	--------	------------

 (a) Final positional parameters and their estimated standard deviations (in parentheses)^a

Atom	Х	Y	Z
Ni	-5.6(4)	-19.8(4)	59.1(4)
Nl	887(3)	1003(2)	-229(4)
Ol	631(3)	1944(2)	124(4)
02	816(3)	-944(3)	-554(4)
N2	1778(3)	-872(3)	-1020(4)
N3	-842(3)	-1053(3)	449(4)
03	-589(3)	-2000(2)	160(4)
O4	-858(3)	919(2)	632(4)
N4	-1734(4)	812(4)	1220(5)
Cll	3207(4)	215(4)	-1488(5)
C12	2172(3)	0(3)	-1047(4)
C13	1747(4)	931(4)	-682(5)
Cl4	2566(4)	1675(4)	-901(5)
C15	3387(5)	1450(5)	-11(5)
C16	3836(4)	448(5)	-391(6)
C17	3048(4)	1271(4)	-1959(5)
C18	2305(6)	1246(6)	-2933(6)
C19	3991(5)	1802(5)	- 2303(6)
ClO	3713(5)	-546(5)	-2219(7)
C21	-3011(4)	-293(5)	2068(6)
C22	-2053(4)	-50(4)	1369(4)
C23	-1673(4)	-970(4)	1024(5)

^aThe positional parameters are presented in fractional unit cell coordinates (X 10⁴).

/

Atom	X	Ŷ	Z
C24	-2355(4)	-1752(4)	1522(5)
C25	-2145(6)	-1733(7)	2781(7)
C26	-2498(7)	-794(8)	3170(6)
C27	-3353(5)	-1217(4)	1492(5)
C28	-3741(5)	-1048(7)	309(6)
C29	-4212(4)	-1768(5)	2138(7)
C20	-3747(6)	520(6)	2233(11)

(b) Final thermal parameters (X 10^4) and their

estimated standard deviations (in parentheses)^b

	βιι	ß 22	₿зз	β 12	β 13	β 23
Ni	32.6(3)	42.0(3)	66.4(4)	-1.2(3)	3.0(3)	-5.1(3)
Nl	44(3)	44(2)	84(4)	9(2)	1(3)	-8(3)
Ol	83(3)	41(2)	176(5)	4(2)	45(4)	-24(3)
02	42(2)	59(2)	142(4)	-14(2)	25(3)	-28(3)
N2	50(3)	50(3)	131(5)	0(2)	33(3)	-22(3)
N3	39(2)	45(2)	95(4)	-5(2)	8(3)	-9(3)
03	65(3)	43(2)	168(5)	- 5(2)	41(3)	-21(3)
04	51(2)	46(2)	112(4)	0(2)	32(3)	- 5(2)
$N^{\frac{1}{4}}$	52(3)	60(3)	119(5)	0(3)	25(3)	-13(3)

^bThe β ij are defined by: $T = \exp\{-(h^2\beta_{11} + k^2\beta_{22} + 1^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})\}.$

	β11	β22	β 33	βı2	β_{13}	β 23
Cll	46(3)	62(4)	101(5)	-7(3)	23(3)	-10(4)
C12	37(2)	54(3)	76(4)	-5(3)	5(3)	-14(3)
C13	46(3)	43(3)	78(4)	-1(2)	8(3)	-2(3)
C14	68(4)	49(3)	99(5)	-8(3)	31(4)	-2(3)
C15	66(4)	102(5)	92(5)	-29(4)	18(4)	-39(5)
C16	40(3)	101(5)	130(7)	-7(3)	-2(4)	-4(5)
C17	54(4)	62(4)	78(4)	4(3)	18(3)	3(3)
C18	118(7)	123(7)	97(6)	-5(6)	3(6)	17(6)
C19	81(4)	73(4)	125(7)	-11(4)	41(5)	0(5)
ClO	94(5)	82(5)	145(7)	17(4)	42(6)	-42(5)
C21	72(4)	64(4)	137(7)	-11(3)	63(5)	-14(4)
C22	51(3)	53(3)	86(4)	-4(3)	18(3)	2(4)
C23	40(3)	51(3)	72(4)	-1(2)	2(3)	-3(3)
C24	50(3)	59(4)	102(5)	-3(3)	12(4)	13(4)
C25	86(5)	125(7)	112(7)	-40(5)	-15(5)	44(7)
C26	133(8)	180(10)	69(5)	-81(8)	12(5)	-19(6)
C27	54(3)	63(4)	100(5)	l(3)	10(4)	9(4)
C28	75(5)	171(8)	105(7)	-36(6)	-21(5)	34(7)
C29	53(4)	75(4)	161(8)	-10(3)	29(5)	4(5)
C20	113(7)	68(5)	431(21)	-13(5)	155(11)	-23(9)

Ni - Nl	1.859(4)	C11 - C16	1.590(9)
Ni - 02	1.820(4)	Cll - Cl7	1.563(8)
Ni - N3	1.851(4)	Cl4 - Cl7	1.525(8)
Ni - 04	1.840(3)	C17 - C18	1.527(10)
Nl - Ol	1.396(5)	Cl7 - Cl9	1.497(8)
N2 - 02	1.388(6)	Cll - ClO	1.517(8)
N3 - 03	1.380(5)	C21 - C22	1.553(7)
N4 - 04	1.362(6)	C22 - C23	1.414(7)
Nl - Cl3	1.261(6)	C23 - C24	1.519(7)
N2 - C12	1.300(6)	C24 - C25	1.540(10)
N3 - C23	1.301(6)	C25 - C26	1.442(12)
N4 - C22	1.264(7)	C21 - C26	1.639(11)
C11- C12	1.492(6)	C21 - C27	1.507(8)
C12- C13	1.457(7)	C24 - C27	1.505(7)
C13- C14	1.505(7)	C27 - C28	1.530(9)
C14- C15	1.553(9)	C27 - C29	1.565(8)
C15- C16	1.559(9)	C21 - C20	1.488(9)

Table II. Interatomic distances (Å)

Table	III.	Bond	angles	(degree)

Nl	- Ni	- 02	93.9(2)	Cl3 - Cl4 - Cl7	101.5(4)
Nl	- Ni	- N3	175.6(2)	C15 - C14 - C17	102.4(4)
Nl	- Ni	- 04	86.2(2)	Cll - Cl7 - Cl8	110.1(5)
02	- Ni	- N3	85.9(2)	Cll - Cl7 - Cl9	115.8(5)
02	- Ni	- 04	178.0(2)	Cll - Cl7 - Cl4	95.0(4)
N3	- Ni	- 04	94.2(2)	C18 - C17 - C19	109.3(5)
Ni	- Nl	- Ol	118.8(3)	Cl4 - Cl7 - Cl8	112.5(5)
Ni	- Nl	- C13	126.3(3)	C14 - C17 - C19	113.7(5)
Ni	- Nl	- Cl3	126.3(3)	C14 - C17 - C19	113.7

Table III. (continued)

Ni	_	02	_	N2	131.1(3)	C17	-	Cll	-	CIO	118.8(5)
Ol	-	Nl		C13	114.8(4)	C27	-	C21	-	C20	119.4(6)
02	-	N2	-	CIS	116.1(4)	C21	-	C22	-	C23	104.9(4)
Nl	-	C13	-	C12	122.9(5)	C22	-	C23	-	C24	107.4(4)
Nl	-	C13	-	Cl4	131.9(5)	C23	-	C24	-	C25	105.7(5)
N2	-	C12	-	Cll	123.7(5)	C24	-	C25	-	C26	106.0(7)
N2	-	C12	-	C13	129.6(4)	C25	-	C26	-	C21	103.9(6)
Cll	-	C12	-	C13	106.6(4)	C22	-	C21	-	C26	101.0(5)
C12	-	C13	-	Cl4	105.1(4)	C22	-	C21	-	C27	100.0(5)
C13	-	Cl4	-	C15	104.2(4)	C55	-	C21	-	C20	116.2(6)
Cl4	-	C15	-	C16	103.6(5)	C26	-	C21	-	C27	98.4(6)
C15	-	C16	-	Cll	102.8(5)	C26	-	C21	-	C20	118.2(8)
C12	-	Cll	-	C16	102.7(4)	C23	-	C24	-	C27	99.6(4)
C12	-	Cll	-	C17	100.8(4)	C25		C24		C27	99.9(6)
C12	-	Cll	-	ClO	118.2(5)	C21	-	C27	-	C28	113.7(6)
C16	-	Cll	-	C17	100.7(5)	C51		C27	-	C29	113.0(5)
C16	-	Cll	-	CIO	112.9(5)	C21	-	C27	-	C24	97.7(5)
C28	-	C27	-	C29	107.0(6)	N3	-	C23	-	C22	122.1(5)
C24	-	C27	-	C 28	112.8(6)	04	-	N4	-	C55	117.1(5)
C24	-	C27	-	C29	112.7(5)	03	-	N3	-	C23	114.7(4)
N4	-	C55	-	C23	132.0(5)	Ni	-	04		N4	129.6(3)
N4	-	C22	-	C21	123.1(5)	Ni	-	N3	-	C23	124.8(4)
N3	-	C23	-	C24	130.3(5)	Ni	-	N3	-	03	120.4(3)

REFERENCES AND NOTES

- 1. a) Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.
 - b) Holm, R. H.; O'Connor, M. J. <u>Progress. Inorg. Chem.</u> <u>1971</u>, 14, 277.
- 2. a) Schrauzer, G. N. Accounts Chem. Res. 1968, 1, 97.
 - b) Schrauzer, G. N. <u>Angew. Chem. Int. Edit. Eng. 1976</u>, 15, 417.
- 3. a) Miller, J. S.; Epstein, A. J. <u>Progress Inorg. Chem.</u> <u>1976</u>, 20, 100.
 - b) Thomas, T. W.; Underhill, A. E. <u>Chem. Soc. Rev.</u> <u>1972</u>, 1, 99.
- 4. Perrin, D. D. "Organic Complexing Reagents"; Interscience Publishers: New York, N.Y., 1964.
- 5. a) Rechani, P. R.; Nakon, R.; Angelici, R. J. <u>Bioinorg</u>. <u>Chem</u>. <u>1976</u>, 5, 329.
 - b) Bedell, S. A.; Rechani, P. R.; Angelici, R. J.; Nakon, R. <u>Inorg. Chem. 1977</u>, 16, 972.
- 6. Ohgo, Y.; Natori, Y.; Takeuchi, S.; Yoshimura, J. <u>Chem.</u> Letters <u>1974</u>, 1327.
- 7. Forster, M. O. J. Chem. Soc. 1913, 103, 667; 1903, 83, 514.
- 8. Daniel, A.; Pavia, A. A. Tetrahedron Lett. 1967, 1145.
- 9. Ma, M. S.; Jacobson, R. A.; Angelici, R. J. Unpublished work, Iowa State University.
- 10. a) Nakamura, A.; Konishi, A.; Tatsuno, Y.; Otsuka, S. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1978</u>, 100, 3443.
 - b) Nakamura, A.; Konishi, A.; Tsujitani, R.; Kudo, M.; Otsuka, S. J. <u>Am. Chem. Soc.</u> 1978, 100, 3449.
- 11. Jacobson, R. A. J. Appl. Cryst. 1976, 9, 115.
- 12. Hubbard, C. A.; Quicksall, C. O.; Jacobson, R. A. U.S.A.E.C. IS-2625, <u>1971</u>.

- 13. Busing, W. R.; Martin, K. O.; Levy, H. A. U.S.A.E.C. ORNL-TM-305, <u>1965</u>.
- 14. a) Grodycki, L. E.; Rundle, R. E. <u>Acta Cryst</u>. <u>1953</u>, 6, 487.
 - b) Williams, D. E.; Wohlauer, G.; Rundle, R. E. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1959</u>, 81, 755.
- 15. Bigotto, A.; Costa, G.; Galasso, V.; DeAlti, G. Spectrochim. Acta 1970, 26A, 1939.

SECTION II. NOVEL TRANSITION METAL COMPLEXES OF CAMPHORQUINONEDIOXIME LIGANDS

INTRODUCTION

The chemistry of transition metal complexes with α -dioxime ligands has been well studied and is the subject of several reviews.¹⁻⁵ Yet little was known about the coordination chemistry of transition metals with the camphorquinonedioxime ligands, H₂CQD, until last year when work in this laboratory⁶ and in Osaka University⁷⁻⁹ was reported.

Our interest in this area evolved from previous studies of optically active ligands^{10,11} and a desire to prepare complexes with optically active α -dioxime ligands. Unlike dimethylglyoxime, H₂DMG, or cyclohexanedionedioxime, H₂CHD, camphorquinonedioxime has been isolated in four isomeric forms which, henceforth, are referred to as α -, β -, γ -, and δ -H₂CQD as shown in Figure 1. In the present paper, we describe transition metal complexes of all of these isomers, as well as the diverse and novel ways in which these ligands coordinate to metal ions.

Figure 1. Isomers of H₂CQD.

EXPERIMENTAL SECTION

<u>Spectral data</u> Proton NMR spectra were obtained on a Varian HA-100 spectrometer using TMS as internal reference. IR spectra (4000-200 cm⁻¹) were obtained as KBr pellets using a Beckman IR-4250 spectrophotometer. Electronic spectra were recorded on a JASCO-ORD/UV-5 or Cary 14 instrument with CHCl₃ as solvent.

<u>Conductivity measurement</u> The molar conductivity of $Pd(\gamma-H_2CQD)_2Cl_2$ in MeOH was measured to be 33.25 cm²ohm⁻¹M⁻¹ by employing a conductivity bridge model RCl6-B2. The cell constant was 0.3712, and the concentration of $Pd(\gamma-H_2CQD)_2Cl_2$ was 1.79 X 10⁻³ M.

<u>Starting materials</u> The Pd(PhCN)₂Cl₂¹² and Pt(PhCN)₂Cl₂¹³ were prepared according to published procedures. The optically active isomeric H₂CQD ligands were prepared by the procedures of Forster.¹⁴ Deuterium exchange reactions of the camphorquinonedioxime ligands and Ni(δ -HCQD)₂ were carried out by refluxing the compounds for 10 hours in CH₃OD and then reisolating them by subsequent removal of the solvent under vacuum.

<u>Preparation of Ni(δ -HCQD)</u> Single crystals of Ni(δ -HCQD)₂ were prepared by dissolving 0.62 mmol of Ni(NO₃)₂·6H₂O in 10 ml of MeOH at 50° C. Then 1.24 mmol of Y-H₂CQD was added. While stirring, 1.24 mmol of NaOMe

in 10 ml of MeOH was added. The resulting green solution was refluxed for 2-3 hours. This solution was filtered while still hot. The solvent was removed under vacuum. The crude solids obtained were dissolved in CH_3CN and filtered. Upon standing overnight at room temperature in a stoppered flask, the filtrate yielded brown tetrahedral crystals of Ni(δ -HCQD)₂. Yield 20%. Anal. Calcd. for Ni($C_{10}H_{15}N_2O_2$)₂: C, 53.46; H, 6.74; N, 12.47. Found: C, 53.28; H, 6.60; N, 12.55.

<u>Preparation of Ni(α -HCQD)₂</u> This compound was prepared by dissolving 0.32 mmol of α -H₂CQD in MeOH containing 0.16 mmol of Ni(OAc)₂·4H₂O. The resulting solution was filtered. Upon allowing the filtrate to stand overnight fine green needlelike crystals of Ni(α -HCQD)₂ deposited. Yield 50%. Anal. Calcd. for Ni($C_{10}H_{15}N_2O_2$)₂: C, 53.47; H, 6.75; N, 12.47. Found: C, 53.51; H, 6.75; N, 12.72.

<u>Preparation of Ni(δ -HCQD)₂(δ -H₂CQD)₂ This complex</u> was prepared by dissolving 0.96 mmol of γ -H₂CQD and 0.32 mmol of Ni(NO₃)₂.6H₂O in 10 ml of MeOH, and the resulting solution was refluxed for only one hour in the presence of 0.64 mmol of NaOMe. The green solution was then evaporated to dryness under vacuum and the solid was dissolved in 15 ml of anhydrous CH₃CN which was dried by refluxing over CaH₂ for 8 hours and distilling under anhydrous conditions. The green CH₃CN solution was filtered. The final filtrate was

stored in a stoppered flask and cooled to about -25° C. Within an hour fine green needlelike crystals of the product deposited at the bottom of the flask. Yield 23%. Anal. Calcd. for Ni(C₁₀H₁₅N₂O₂)₂(C₁₀H₁₆N₂O₂)₂: C, 57.07; H, 7.44; N, 13.32; Ni, 6.97. Found: C, 56.95; H, 7.35; N, 13.28; Ni, 6.86.

<u>Preparation of $Cu(\beta-HCQD)_2 \cdot H_2O \cdot 1/2$ dioxane</u> This compound was obtained by dissolving 0.32 mmol of $Cu(OAc)_2 \cdot H_2O$ in 10 ml of MeOH containing 0.64 mmol of $\gamma-H_2CQD$. The dark brown solution was refluxed for 2-3 hours. After vacuum evaporation the black oily residue was dissolved in 10 ml of dioxane; the resulting solution was filtered and approximately 5 ml of H_2O was added. After several days dark brown needlelike crystals of the compound covered the bottom of the flask. The dioxane in the complex was also detected by GC with CHCl₃ as solvent and using an SE-52 column. Yield 80%. Anal. Calcd. for $Cu(C_{10}H_{15}N_2O_2)_2 \cdot H_2O \cdot 1/2(C_4H_8O_2)$: C, 51.19; H, 7.04; N, 10.86. Found: C, 51.02; H, 6.99; N, 10.54.

<u>Preparation of $Cu(\beta-H_2CQD)Cl_2$ </u> This complex was prepared by mixing 0.32 mmol of $CuCl_2 \cdot 2H_2O$ with 0.32 mmol of $\gamma-H_2CQD$ in 1C ml of absolute EtOH. After stirring overnight the green solution was evaporated to dryness. The solid was dissolved in 15 ml of CH_3CN from which green needlelike crystals were obtained. Yield 60%. Anal. Calcd. for Cu(C₁₀H₁₆N₂O₂)Cl₂: C, 36.32; H, 4.89; N, 8.47; Cl, 21.44. Found: C, 36.29; H, 4.72; N, 8.35; Cl, 21.57.

<u>Preparation of $Pd(\beta-HCQD)_2$ </u> This Pd(II) complex was prepared by suspending 0.32 mmol of β -H₂CQD in 25 ml of MeOH at 50° C. Then an equivalent amount of NaOMe was added so that a clear solution was obtained. Immediately 0.16 mmol of $Pd(PhCN)_2Cl_2$ in 10 ml of CHCl₃ was mixed into the solution. After warming the resulting yellow solution at 70° C in a hot H₂O bath for about 15 minutes, it was filtered into a flask containing 5 ml of H₂O. The filtrate totalling about 40 ml was left standing for a period of several days after which a crop of yellow needlelike crystals of $Pd(\beta-HCQD)_2$ was obtained. Yield 45%. Anal. Calcd. for $Pd(C_{10}H_{15}N_2O_2)_2$: C, 48.34; H, 6.10; N, 11.28. Found: C, 48.48; H, 6.30; N, 11.19.

<u>Preparation of $Pd(\delta - HCQD)_2$ </u> Yellow $Pd(PhCN)_2Cl_2$ (0.32 mmol) was added to 10 ml of MeOH containing 0.64 mmol of $\delta - H_2CQD$ and an equivalent amount of Et₃N. After stirring at 50° C for 2 hours, the yellow solution was filtered, and the filtrate was cooled to -25° C. Yellow crystals of $Pd(\delta - HCQD)_2$ crystallized out after 24 hours in 45% yield. Anal. Calcd. for $Pd(C_{10}H_{15}N_2O_2)_2$: C, 48.34; H, 6.10; N, 11.28. Found: C, 48.41; H, 6.17; N, 11.45.

Preparation of $Pt(\beta-HCQD)_2$ Dark brown crystals of Pt(β -HCQD)₂ were prepared in the same manner as Pd(β -HCQD)₂. Yield 18%. Anal. Calcd. for Pt($C_{10}H_{15}N_2O_2$)₂: C, 41.02; H, 5.17; N, 9.57. Found: C, 40.89; H, 5.56; N, 9.15.

<u>Preparation of Pd(γ -H₂CQD)₂Cl₂</u> Upon mixing 10 ml CHCl₃ solutions of γ -H₂CQD (0.32 mmol) and Pd(PhCN)₂Cl₂ (0.16 mmol) at room temperature, yellow crystals of Pd(γ -H₂CQD)₂Cl₂ almost immediately started to crystallize out of the solution. The reaction was complete within 15-30 minutes in 80% yield. Anal. Calcd. for Pd(C₁₀H₁₆N₂O₂)₂Cl₂: C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.08; H, 5.40; N, 9.75; Cl, 12.63.

Preparation of $Pd(\delta-H_2CQD)_2Cl_2$ This compound was prepared in the same manner as $Pd(\gamma-H_2CQD)_2Cl_2$. Yield 80%. Anal. Calcd. for $Pd(C_{10}H_{16}N_2O_2)_2Cl_2$: C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.13; H, 5.96; N, 9.53; Cl, 13.76.

<u>Preparation of $Pd(\alpha-H_2CQD)_2Cl_2</u>$ This complex was prepared in the same manner as $Pd(\gamma-H_2CQD)_2Cl_2$. Yield 80%. Anal. Calcd. for $Pd(C_{10}H_{16}H_2O_2)_2Cl_2$: C, 42.15; H, 5.67; N, 9.83; Cl, 12.44. Found: C, 42.86; H, 5.75; N, 9.64; Cl, 13.12.</u>

<u>Preparation of $Pd(\beta-H_2CQD)Cl_2$ </u> This complex was prepared by mixing a boiling 2:1 MeOH/CHCl₃ solution of $\beta-H_2CQD$ (0.32 mmol) and 10 ml of a CHCl₃ solution of

Pd(PhCN)₂Cl₂ (0.32 mmol). After filtration, the filtrate upon cooling to room temperature gave a crop of orange crystals of Pd(β -H₂CQD)Cl₂. Yield 30%. Anal. Calcd. for Pd(C₁₀H₁₆N₂O₂)Cl₂: C, 32.15; H, 4.33; N, 7.50; Cl, 18.98. Found: C, 32.38; H, 4.42; N, 7.60; Cl, 18.72.

<u>Preparation of $Pt(\beta-H_2CQD)Cl_2$ </u> The preparation of this complex was the same as above except $Pt(PhCN)_2Cl_2$ was used. Yield 30%. It was shown by its IR spectrum to be the desired product.

Preparation of $Pd(H_2CHD)Cl_2$ The same procedure as the preparation of $Pd(\beta-H_2CQD)Cl_2$ was used. Yield 70%. Anal. Calcd. for $Pd(C_6H_{10}N_2O_2)Cl_2$: C, 22.56; H, 3.16; N, 8.77; Cl, 22.19. Found: C, 22.60; H, 3.22; N, 8.87; Cl, 22.52.

Preparation of $Pd(H_2DMG)Cl_2$ This complex was prepared in the same manner as $Pd(\beta-H_2CQD)Cl_2$. Yield 60%. Anal. Calcd. for $Pd(C_4H_8N_2O_2)Cl_2$: C, 16.37; H, 2.75; N, 9.55; Cl, 24.16. Found: C, 16.34; H, 2.87; N, 9.49; Cl, 24.05.

<u>Preparation of $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$ </u> Pink K₂PtCl₄ (0.32 mmol) was dissolved in 5 ml of H₂O at 60° C and 0.64 mmol of γ -H₂CQD in 10 ml of 1:1 H₂O/MeOH was added. The resulting yellow solution was then allowed to cool to room temperature. The orange-yellow product which precipitated out was filtered and air dried. Yield 60%. Anal. Calcd. for Pt(C₁₀H₁₅N₂O₂)(C₁₀H₁₆N₂O₂)Cl: C, 38.61; H, 5.03; N, 9.01; Cl, 5.69. Found: C, 38.55; H, 5.14; N, 8.90; Cl, 5.22. The molecular weight determination of $Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl$ in acetone using osmometry gave 1,278 g/mol while the calculated value for dimeric $Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl$ is 1,250.2 g/mol.

<u>Preparation of Pt(HCQD)₂·H₂O</u> When an equivalent amount of NaOMe was added to $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$ in methanol, an orange solution was obtained. After stirring for 15 minutes, it was evaporated to dryness under vacuum. The solid was dissolved in 15 ml of CH₃CN. After filtration, diethyl ether was added to precipitate out the product which was dried under vacuum overnight. Yield 60%. Anal. Calcd. for Pt(C₁₀H₁₅N₂O₂)₂·H₂O: C, 39.79; H, 5.35; N, 9.28. Found: C, 39.9⁴; H, 5.37; N, 9.23.

<u>Preparation of Pd(HCQD)₂·H₂O</u> This complex was prepared in the same manner as Pt(HCQD)₂·H₂O except Et₃N was used as the base and acetone was the solvent and starting with Pd(γ -H₂CQD)₂Cl₂. After stirring for 15 minutes, the solution was evaporated to dryness. The orange solid was washed with hot H₂O, filtered and then washed again with acetone and methanol. It was then dried under vacuum. Yield 70%. Anal. Calcd. for Pd(C₁₀H₁₅N₂O₂)₂·H₂O: C, 46.64; H, 6.28; N, 10.88. Found: C, 46.88; H, 6.36; N, 10.83.

RESULTS AND DISCUSSION

<u>Camphorquinonedioxime ligands, H₂CQD</u> The four isomers of H₂CQD were first prepared by Forster.¹⁴ However, not until 1967 when Daniel and Pavia¹⁵ conducted ¹H NMR studies on these isomers were their structures established. Our X-ray structural study¹⁶ of γ -H₂CQD also indicated that it has the syn structure. A computer-generated perspective view of γ -H₂CQD is shown in Figure 2 in which the oxime 0 atoms are directed towards each other.

The IR spectrum of γ -H₂CQD in a KBr pellet gives three bands of medium intensity at 1600, 1640, and 1540 cm⁻¹. In CHCl₃ solution, only the band at 1600 cm⁻¹ is observed, plus two other intense bands at 960 and 980 cm⁻¹. These latter two bands are assigned as N-O stretching vibrations. Deuterium substitution of the oxime protons causes the 1640 and 1540 cm⁻¹ bands to decrease in intensity and two new bands to appear at 1150 and 1090 cm⁻¹, respectively. They are probably associated with the OH deformation vibration of the N-OH.¹⁷ Therefore, we assign the band at 1600 cm⁻¹ to a C=N stretching vibration.

The CHCl₃ solution IR spectra of α - and δ -H₂CQD give ν (C=N) absorptions at 1655, 1600 cm⁻¹ and 1670, 1605 cm⁻¹, respectively, in good agreement with those reported by Nakamura et. al.⁹ Finally, the ν (C=N) absorptions of

Figure 2. Computer generated perspective view of $\gamma\text{-}H_2\text{CQD}\text{.}$

 β -H₂CQD are not readily observed due to extensive H-bonding which broadens the region between 1600-1700 cm⁻¹. However, substituting deuterium for the oxime protons causes the disappearance of the broad band at 1600 cm⁻¹ and reveals two bands of medium intensity at 1670 and 1615 cm⁻¹. They are therefore assigned as the ν (C=N) absorptions. The N-0 vibrations of β -, α -, and δ -H₂CQD are generally observed between 900-1100 cm^{-1¹⁸} as intense bands.

Bis(β -Camphorquinonedioximato)Cu(II)·H₂O·1/2 dioxane, Cu(β -HCQD)₂·H₂O·1/2 dioxane H₂CQD might be expected to react with metal ions in the presence of base according to equation 1:

M²⁺ + 2H CQD + 2B ----

Two isomeric products are possible. When $Cu(OAc)_2 \cdot H_2O$ was reacted with $\gamma-H_2CQD$ in MeOH, only a dark brown product,

 $Cu(\beta-HCQD)_2 \cdot H_2O \cdot 1/2$ dioxane, was obtained. The IR spectrum of the complex exhibits v(C=N) absorptions at 1610 and 1560 cm⁻¹ as was previously found for Cu(HDMG),^{19,20} and $Cu(HCHD)_{2}^{21}$; this suggests that the HCQD ligand is N,Ncoordinated to Cu(II). Further evidence for square planar N,N-coordination comes from the ESR spectrum shown in Figure 3. By analogy with results reported by Wiersema and Windle²² for Cu(HDMG)₂, Cu(β -HCQD)₂ should have four lines due to copper (Cu^{63} , Cu^{65} , I=3/2) nuclear hyperfine interaction plus extra lines due to nitrogen (N^{14} , I=1) hyperfine interactions which can be accounted for as nine nitrogen hyperfine lines per line of copper. Because of line broadening on the low field side of the spectrum, they are not readily observed; however, nitrogen hyperfine splitting is observed on the high field side. The CHCl3 solution spectrum (Figure 3) of $Cu(\beta-HCQD)_2$ is nearly identical to that of Cu(HDMG)2.22 Although Cu(HDMG)2 is known to exist as a dimer²³ in the solid state, little is known about the structure of solid $Cu(\beta-HCQD)_2 \cdot H_2 0 \cdot 1/2$ dioxane; however, the presence of H2O and dioxane seems to be important for the formation of crystals. Its UV-VIS spectrum in CHCl₃ gives a broad absorption band with a maximum at 445 nm (E = 7.9 X 10^3 cm⁻¹M⁻¹) most likely due to a d-d transition while its charge transfer band is observed at 266 nm, comparable to that of Cu(HDMG) 2.24

Figure 3. ESR spectrum of $Cu(\beta-HCQD)_2$ in $CHCl_3$ at room temperature recorded on a Varian E-3 ESR spectrometer. g value = 2.08 measured by comparison with perylene radical cation.

(β -Camphorquinonedioxime) Cu(II) Cl₂, Cu(β -H₂CQD) Cl₂ This complex can be prepared by reacting CuCl₂ with γ -H₂CQD in the absence of added base in absolute EtOH. Unlike Cu(H₂DMG)Cl₂, it is very stable in air. Svedung²⁵ reported that the structure of Cu(H₂DMG)Cl₂ consists of double chains of Cu(H₂DMG)Cl₂ dimers linked together by intermolecular O-H-O bonds. Since Cu(β -H₂CQD)Cl₂ has an IR spectrum very similar to that of Cu(H₂DMG)Cl₂, we believe that it probably has a similar dimeric structure as shown in Figure 4. The two molecules are bridged by Cl atoms, and the structure is probably further stabilized by intramolecular O-H-Cl bonding.

The intense IR band at 1450 cm⁻¹, presumably due to the ν (C=N) absorption, was observed in Cu(H₂DMG)Cl₂ and is also observed in similar Pt(II) and Pd(II) compounds (see below). Svedung was unable to account for such a low frequency for a ν (C=N) vibration, although Mikhelson and Evtushenko¹⁹ assigned it to the ν (C=N) vibrational mode.

Bis(δ -Camphorquinonedioximato)Ni(II), Ni(δ -HCQD)₂ This brown complex was prepared by addition of NaOMe to a methanol solution of Ni(NO₃)₂. δ H₂O and γ -H₂CQD. Our earlier single crystal X-ray structural study⁶ established that the ligand forms a 6-membered chelate ring by coordinating to the Ni through the N and O atoms in a trans manner as shown in Figure 5.

Figure 4. $Cu(\beta-H_2CQD)Cl_2$ dimer.

Figure 5. Computer generated perspective view of $Ni(\delta-HCQD)_2$.

The reason for this unusual coordination is believed to be the bicyclic nature of the ligand which increases the C-C-N angles in the chelate ring to the point where formation of a larger ring by N,O rather than N,N coordination becomes more favorable. The IR spectrum of Ni(δ -HCQD)₂ shows an absorption band of medium intensity at 1690 cm⁻¹. Deuterium substitution studies indicate that this absorption is not associated with the OH group but presumably arises from a vibration which has considerable C=N stretching character. The other ν (C=N) absorption occurs at 1560 cm⁻¹.

Bis(α-Camphorquinonedioximato)Ni(II), Ni(α-HCQD)₂ This green complex was prepared by adding α-H₂CQD to a methanol solution of Ni(OAc)₂·4H₂O. It also probably has trans-N,O coordination around the Ni as in the case of Ni(δ -HCQD)₂. This assumption is supported by the presence of two different ν (C=N) absorptions at 1675 and 1560 cm⁻¹ in the IR spectrum. In a recent paper, Nakamura et al.⁹ reported the preparation of the same Ni(II) and Pd(II) complexes of HCQD⁻. Our spectral data for Ni(δ -HCQD)₂ and Ni(α -HCQD)₂ were in good agreement with theirs.

Although the coordination around Ni is very similar in both Ni(α -HCQD)₂ and Ni(δ -HCQD)₂ complexes, Ni(α -HCQD)₂ is observed to be less stable. Recrystallization of Ni(α -HCQD)₂ in boiling (1:3:1) CHCl₃/MeOH/H₂O partially converts Ni(α -HCQD)₂ into Ni(δ -HCQD)₂. It is possible that the repulsion of the oxime O with the bridgehead methyl (see structure of α -H₂CQD) destabilizes the Ni(α -HCQD)₂ complex relative to that of Ni(δ -HCQD)₂.

The mixed ligand complex Ni(α -HCQD)(δ -HCQD) has not been isolated; nor has any Ni complex with cis N,O coordination (Figure 6) around Ni been detected. Such a complex would presumably be less stable due to the lack of hydrogen bonding which is present in the other Ni complex. Also in the reaction of Ni(II) with β -H₂CQD, only Ni(δ -HCQD)₂ was isolated.

¹H NMR spectra of Ni(δ -HCQD)₂ and Ni(α -HCQD)₂ are summarized in Table I. The chemical shifts of the methyl proton signals in each complex are very close to those of the free ligands (Table I). The oxime protons are downfield at 10.94 and 11.10 ppm, respectively.

The UV-VIS spectra of the two complexes (Figure 7) are almost identical; their absorption maxima and ϵ values are summarized in Table II.

 $\frac{\text{Bis}(\delta-\text{Camphorquinonedioximato})-\text{bis}(\delta-\text{camphorquinone}-)}{\text{dioxime})\text{Ni(II}, \text{Ni}(\delta-\text{HCQD})_2(\delta-\text{H}_2\text{CQD})_2}$ This unstable complex was prepared using a 3 to 1 ratio of $\gamma-\text{H}_2\text{CQD}$ to Ni(NO₃)₂·6H₂O and crystallized from anhydrous CH₃CN at -25° C. Once the

Figure 6. Cis isomer of $Ni(\delta-HCQD)_2$.

Complex	Solvent	0-Н	С4-Н			Methy	yl-H		
Ni(α -HCQD) ₂	_a	11.10 ^b	2.62	0.88		0.90			1.39 ^c
	d	е	2.62	0.88		0.94			1.39
Ni(δ -HCQD) ₂	_ ^a	10.94 ^b	3.20	0.82		0.96			1.12 ^c
	_d	е	3.20	0.82			1.00		1.12
$Ni(\delta-HCQD)_{2}(\delta-H_{2}CQD)_{2}$	d	е	3.25	0.82	0.86	0.96	1.01	1.09	1.12
δ-H₂CQD	_ ^d	е	3.10		0.86		1.01	1.09	c
Pd(β- HCQD) ₂	_a	12.35 ^f	2.90	0.82			1.00		1.38 ^c
Pd(ð-HCQD) ₂	d _e -DMSO	е	3.24	0.80		0.95			1.12 ^c
Pt(β -HCQD) ₂	_a	12.56 ^f	3.0	0.82		0.98			1.42°
				i					

Table I. ¹H NMR spectra of M(HCQD)₂ complex

^ad-CHCl₃.
^bSharp singlet.
^cC₁₀-Methyl.
^dd₆-acetone.
^eNot observed.
^fBroad and asymmetrical.

Complex	λ max.(nm)	e(cm ^l M ^l)
$Ni(\delta-HCQD)_{2}^{a}$ $Ni(\alpha-HCQD)_{2}^{a}$	576 413 sh ^b 360 sh 308 576 405 sh 359 sh 306	3.5 X 10 1.6 X 10^3 3.3 X 10^3 1.8 X 10^4 3.3 X 10 8.8 X 10^2 1.6 X 10^3 1.3 X 10^4
$Ni(\delta-H_2CQD)_2(\delta-HCQD)_2^C$	413 359 304	

Table II. UV-Visible spectra of Ni complexes

^aIn CHCl₃.

^bShoulder.

^CAs KBr pellet.

complex crystallized out, further attempts to recrystallize it led only to Ni(δ -HCQD)₂.

Proton NMR studies established that all four ligands in Ni(δ -HCQD)₂(δ -H₂CQD)₂ have the δ - structure. In d₆acetone, 6 methyl proton signals of equal intensity are observed (Table I). The signals at 0.86, 1.01, 1.09 ppm can be assigned to the free δ -H₂CQD ligand while those at 0.82, 0.96, 1.12 ppm belong to Ni(δ -HCQD)₂. The entire ¹H NMR spectrum can be reproduced by mixing a 1:2 ratio of Ni(δ -HCQD)₂ and δ -H₂CQD in d₆-acetone. This result implies that Ni(δ -HCQD)₂(δ -H₂CQD)₂ exists as Ni(δ -HCQD)₂ and δ -H₂CQD in solution, which is consistent with the fact that recrystallization of the complex gives only Ni(δ -HCQD)₂.

The observation of v(C=N) absorptions of the free ligand at 1670 and 1605 cm⁻¹ and of Ni(δ -HCQD)₂ at 1690 and 1560 cm⁻¹ in the IR spectrum of Ni(δ -HCQD)₂(δ -H₂CQD)₂ in CHCl₃ solvent further supports the presence of these species in solution. However, the IR spectrum of the solid complex in KBr gives only a medium intense band with slight splittings at 1565 cm⁻¹ which can be assigned to v(C=N)of N-coordinated oxime. A weak band is observed at 1690 cm⁻¹ which is due to the O-coordinated ν (C=N). The difference in the solution and solid state IR spectra implies that in the crystalline state, all four ligands are coordinated to the metal; the structure is probably stabilized by hydrogen bonding as indicated by the intense absorption band between $3260-3100 \text{ cm}^{-1}$ in the solid state IR spectrum.

The UV-VIS absorption spectrum (Figure 8) of the solid complex pressed into a KBr pellet is very similar to solution spectra of Ni(δ -HCQD)₂ and Ni(α -HCQD)₂. Such a similarity suggests that there are also two N and two 0 donor groups in the coordination sphere of Ni(δ -HCQD)₂. $(\delta$ -H₂CQD)₂. Steric considerations favor a trans arrangement

Figure 8. UV-visible spectrum of Ni(δ -H₂CQD)₂(δ -HCQD)₂ as KBr pellet.

of these donors around the Ni as shown in Figure 9. This structure is consistent with a facile solution dissociation of two δ -H₂CQD ligands followed by ring closure of the δ -HCQD⁻ ligands to give Ni(δ -HCQD)₂.

Bis(β -Camphorquinonedioximato)Pd(II), Pd(β -HCQD)₂ The yellow complex, Pd(β -HCQD)₂ was prepared in H₂O/MeOH/CHCl₃ (1:3:1) from Pd(PhCN)₂Cl₂, β -H₂CQD and NaOMe. This is a different method from the one reported by Nakamura, et al.⁹ and the product is believed to be a mixture of two isomers with structures shown in equation 1.

The IR spectrum of the complex clearly indicates N,N chelation of the ligands around the Pd atom. The v(C=N)band appears at 1550 cm⁻¹, and the H-bonded v(OH) absorption at 2380 cm⁻¹ is comparable to the reported value for Pd(HCHD)₂.²¹ The UV-VIS absorption spectrum exhibits a shoulder at 362 nm ($\epsilon = 2.0 \times 10^3 \text{ cm}^{-1}\text{M}^{-1}$) and a charge transfer band at 274 nm ($\epsilon = 1.4 \times 10^4 \text{ cm}^{-1}\text{M}^{-1}$).

In its ¹H NMR spectrum (Table I) taken in d-CHCl₃, the oxime proton with a chemical shift of 12.35 ppm downfield from TMS is observed as a broad asymmetric peak. Although Marov et al.²⁷ who studied the H-bonding of Ni(II) α -dioximates by ¹H NMR suggested that an asymmetric peak indicates the presence of isomers, there is no

Figure 9. $Ni(\delta-H_2CQD)_2(\delta-HCQD)_2$ square planar coordination with trans N_2O_2 . Two other ligands are omitted for clarity. independent evidence for their presence in this system. However, a ¹³C NMR study by Nakamura et al.⁹ has shown that isomers are indeed present in this complex.

Bis(δ -Camphorquinonedioximato)Pd(II), Pd(δ -HCQD)₂ Yellow crystals of Pd(δ -HCQD)₂ could be obtained by reacting Pd(PhCN)₂Cl₂ with δ -H₂CQD in MeOH in the presence of Et₃N. This procedure is different from the one reported by Nakamura et al.⁹ and gave crystals of Pd(δ -H₂CQD)₂ so that elemental analyses and ¹H NMR spectrum of the complex could be obtained.

It is believed to have the same N,O-coordinated structure as Ni(δ -HCQD)₂ because its ¹H NMR spectrum (Table I) in d₅-DMSO is almost identical to that of Ni(δ -HCQD)₂. Its IR absorptions appear at 1560 and 1620 cm⁻¹ corresponding to the N-coordinated and Ocoordinated oxime ν (C=N) frequencies, respectively. Free ν (OH) and H-bonded ν (OH) are observed at 3400 and 2600 cm⁻¹, respectively.

Bis(β -Camphorquinonedioximato)Pt(II), Pt(β -HCQD)₂ This complex was prepared by reacting Pt(PhCN)₂Cl₂ with NaOMe and β -H₂CQD in a 1:3:1 CHCl₃/MeOH/H₂O solution. The brown crystalline product has the structures shown in equation 1. The UV-VIS spectrum unequivocally established N,N-coordination of the β -HCQD⁻ ligands by comparison with

spectra of Pt(HDMG)₂²⁸ and Pt(HCHD)₂. Maxima for Pt(β -HCQD)₂ occur at 411 nm ($\epsilon = 1.3 \times 10^3 \text{ cm}^{-1}\text{M}^{-1}$) and 340 nm ($\epsilon = 4.0 \times 10^3 \text{ cm}^{-1}\text{M}^{-1}$). Absorptions at 305 nm ($\epsilon = 1.09 \times 10^4 \text{ cm}^{-1}\text{M}^{-1}$) and 273 nm (1.14 $\times 10^4 \text{ cm}^{-1}\text{M}^{-1}$) are probably charge transfer bands. In the IR spectrum, the ν (C=N) absorption appears at 1570 cm⁻¹ as a broad but intense band, and H-bonded ν (OH) bands at 3400 and 2380 cm⁻¹ are observed. Its ¹H NMR spectrum (Table I) resembles that of Pd(β -HCQD)₂ showing an asymmetric peak for the oxime protons at 12.56 ppm possibly indicating the presence of both isomers (eq. 1).

<u>Trans-Bis(γ -Camphorquinonedioxime)PdCl₂, trans-</u> <u>Pd(γ -H₂CQD)₂Cl₂ A CHCl₃ solution of Pd(PhCN)₂Cl₂ in the presence of γ -H₂CQD gives large yellow needlelike crystals of Pd(γ -H₂CQD)₂Cl₂. Spectra and a conductivity measurement on this complex suggest that the γ -H₂CQD ligands are monodentate and coordinate to the Pd in positions trans to each other. The trans geometry is supported by the presence of only one Pd-Cl absorption band at 345 cm⁻¹ in the IR spectrum of the complex in KBr. By comparing its IR spectrum with that of the free ligand, the coordinated oxime ν (C=N) vibration may be assigned to the band at 1535 cm⁻¹ while the uncoordinated oxime ν (C=N) is at 1615 cm⁻¹ (Table III). The ¹H NMR spectrum of Pd(γ -H₂CQD)₂Cl₂</u>

Table III. IR^a absorption frequencies (cm⁻¹) of metal H₂CQD dichloride complexes

v(C=N→M) ^b	ν (C=N) ^C	ν(M-Cl)
1535	1615	345
1555	1680	300-350 ^d
1560	1680	300-350 ^d
1560	1610	330
	v(C=N→M) ^b 1535 1555 1560 1560	v(C=N→M) ^b v(C=N) ^c 1535 1615 1555 1680 1560 1680 1560 1610

^aAs KBr pellet ^bCoordinated ν (C=N) ^cUncoordinated ν (C=N)

 d Several $_{\nu}$ (M-Cl) are observed in this region

is summarized in Table IV. The presence of other isomers is not observed. The downfield shift of the C₄-H from 2.65 ppm of the free ligand to 4.34 ppm of the complex seems to indicate that coordination through the N-atom of the C₃-oxime is more favorable. Although coordination at the C₂-N (Figure 10) is possible, this position is less favorable because of the steric interaction of the remainder of the metal complex with the C₁₀-methyl group. Attempts to make Pd(β -HCQD)₂ out of Pd(γ -H₂CQD)₂Cl₂ in methanol by adding an equivalent amount of base led to the formation of Pd(HCQD)₂·H₂O, an orange solid of unknown structure

Table IV. ¹H NMR of metal camphorquinonedioxime

(H₂CQD)dichloride complexes

Complex	Solvent	Methyl-H		
$Pd(\gamma - H_2CQD)_2Cl_2$	d ₆ -acetone d ₆ -DMSO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\gamma - H_2CQD$ Pd($\alpha - H_2CQD$) $_2Cl_2$	α ₆ -DMSO d-MeOH/d ₆ -acetone d ₆ -DMSO d ₆ -DMSO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$Pd(\delta - H_2CQD)_2Cl_2$ $\delta - H_2CQD$	d-MeOH/d ₆ -acetone d ₆ -DMSO d ₈ -DMSO	0.84 0.87 0.98 1.06 0.74 0.88 0.98 0.74 0.88 0.98		
$Pd(\beta-H_{2}CQD)Cl_{2}$ $\beta-H_{2}CQD$	d ₃ -CH ₃ CN d ₆ -DMSO d ₆ -DMSO	0.98 1.04 1.34 0.84 0.90 0.94 1.30 1.34 0.83 1.31		
[Pt(y-HCQD)(y-H ₂ CQD)Cl] ₂	d _e -acetone d _e -DMSO	0.90 1.00 1.07 1.10 1.12 0.74 0.90 0.98 1.04		

insoluble in common organic solvents such as $CHCl_3$, methanol or H_2O .

When a strongly coordinating solvent such as DMSO is added to a MeOH solution of the complex, DMSO displaces the γ -H₂CQD ligands which were identified by their characteristic ¹H NMR spectrum (Table IV).

Bis(δ -Camphorquinonedioxime)PdCl₂, Pd(δ -H₂CQD)₂Cl₂ This complex prepared in the same way as Pd(γ -H₂CQD)₂Cl₂ may exist as a mixture of cis and trans isomers as indicated by several ν (Pd-Cl) bands between 300-350 cm⁻¹ in its IR spectrum (Table III). A possible structure of Pd(δ -H₂CQD)₂Cl₂ is shown in Figure 11. The coordinated and uncoordinated oxime C=N absorption bands appear at 1555 and 1680 cm⁻¹, respectively. The complex is slightly soluble in acetone, and its ¹H NMR spectrum exhibits four methyl proton signals (Table IV) consistent with the assumption that more than one isomer is present. When excess DMSO is added to a solution of the complex, the free δ -H₂CQD is regenerated.

Bis(α -Camphorquinonedioxime)PdCl₂, Pd(α -H₂CQD)₂Cl₂ Pd(α -H₂CQD)₂Cl₂ can be prepared in a manner similar to that of Pd(δ -H₂CQD)₂Cl₂ and probably exists as cis and trans isomers. Its possible structure is shown in Figure 12. Its ¹H NMR and IR spectra are summarized in Tables III and IV.

Figure 11. Cis-Pd(δ -H₂CQD)₂Cl₂.

•

Figure 12. Trans-Pd(α -H₂CQD)₂Cl₂.

Four methyl proton signals appear at 0.92, 0.95, 1.02 and 1.41 ppm. Coordinated and uncoordinated ν (C=N) are observed at 1560 and 1680 cm⁻¹, respectively. Since the ligand coordinates through its less sterically hindered oxime-N, intramolecular H-bonding is possible between the Cl atoms and the ligands, as shown in the trans complex (Figure 12).

Bis(β -Camphorquinonedioxime)PdCl₂, Pd(β -H₂CQD)Cl₂ When a CH₃CN solution of Pd(γ -H₂CQD)₂Cl₂ was allowed to stand for a period of 1-2 weeks at room temperature, Pd(β -H₂CQD)Cl₂ began to crystallize out. In this reaction, the γ -H₂CQD ligand is transformed into the β -isomer. A nearly quantitative yield of the Pd(β -H₂CQD)Cl₂ complex can be obtained by direct reaction between the ligand and Pd(PhCN)₂Cl₂.

As in the case of $Cu(\beta-H_2CQD)Cl_2$, an intense, sharp band at 1430 cm⁻¹ may be assigned to the v(C=N) frequency. Sharp bands of medium intensity also appear at 3270 and 3220 cm⁻¹ corresponding to intermolecular and intramolecular H-bonding,²⁵ respectively. The similarity of their IR spectra (Table V) implies that $Pd(\beta-H_2CQD)Cl_2$ and $Cu(\beta-H_2CQD)Cl_2$ have similar square planar structures with possible intermolecular bridging as suggested in Figure 4.

Table V. IR^a absorption frequencies (cm⁻¹) of M(dioxime)Cl₂ complexes

Complex	ν(C=N)	v(OH)	ν(M-Cl)	
Cu(H ₂ DMG)Cl ₂	1400	3310, 3220		
$Cu(\beta-H_2CQD)Cl_2$	1450	3310, 3260		
$Pd(\beta-H_2CQD)Cl_2$	1430	3270, 3220	350, 325	
$Pt(\beta-H_2CQD)Cl_2$	1440	3300, 3260	345,320	
Pd(H ₂ DMG)Cl ₂	1400	3300, 3200	350, 310	
Pd(H ₂ CHD)Cl ₂	1400	3300, 32 3 0	350, 310	

^aAs KBr pellet.

The β -H₂CQD ligand is not displaced when the complex is dissolved in DMSO, but formation of other Pd complexes occurs as indicated by the appearance of new signals in the ¹H NMR spectrum (Table IV).

The method for the preparation of $Pd(\beta-H_2CQD)Cl_2$ can also be used to prepare $Pd(H_2CHD)Cl_2$, and $Pd(H_2DMG)Cl_2$, all having the same characteristic band at about 1410 cm⁻¹. The compound $Pd(H_2CHD)Cl_2$ has not been reported in the literature, but Busch et al.²⁹ prepared $Pd(H_2DMG)Cl_2$ by reaction of $Pd(HDMG)_2$ with acetyl chloride. Their IR spectra are summarized in Table V. $[(\gamma-Camphorquinonedioxime)(\gamma-camphorquinonedioximato)-$ Pt(II)Cl]₂, [Pt(γ -HCQD)(γ -H₂CQD)Cl]₂ This dimeric complex was prepared by the reaction of K₂PtCl₄ and γ -H₂CQD. A possible structure is shown in Figure 13. This particular structure requires the two ligands to be cis to each other. Steric considerations favor coordination at the less hindered oxime N. Such an arrangement also provides for substantial intramolecular H-bonding.

The absorption bands at 1560 and 1610 cm⁻¹ in the IR spectrum may be assigned to the ν (C=N) vibrations of the coordinated and uncoordinated oxime groups. The broad ν (OH) absorptions at 3100 and 2800 cm⁻¹ resemble those of γ -H₂CQD, suggesting that γ -H₂CQD and γ -HCQD⁻ are present in the complex. As in the case of Pd(γ -H₂CQD)₂Cl₂, addition of base to a methanol solution of [Pt(γ -HCQD)(γ -H₂CQD)Cl]₂ yielded the highly insoluble complex, Pt(HCQD)₂·H₂O of unknown structure. Attempts to isolate pure Pt(α -H₂CQD)₂Cl₂ and Pt(δ -H₂CQD)₂Cl₂ were unsuccessful.

Figure 13. $[Pt(\gamma-H_2CQD)(\gamma-HCQD)Cl]_2$.

CONCLUSION

Camphorquinonedioxime has been shown to be capable of being either a bidentate or monodentate ligand. As a bidentate ligand in the complexes Ni(α -HCQD)₂, Ni(δ -HCQD)₂ and Pd(δ -HCQD)₂, α -HCQD⁻ or δ -HCQD⁻ coordinates to the metal ion via N,O chelation. This mode of coordination is characterized by the presence of both the N-coordinated and O-coordinated ν (C=N) absorptions in the IR spectrum.

In the complexes $Pd(\beta-HCQD)_2$, $Pt(\beta-HCQD)_2$ and $Cu(\beta-HCQD)_2 \cdot H_2 0 \cdot 1/2$ dioxane, β -HCQD⁻ coordinates to the metal ion by N,N chelation. In this case, only N-coordinated v(C=N) absorptions are observed in their IR spectra. The failure to obtain $Ni(\beta-HCQD)_2$ is believed to be due to the bicyclic nature of the ligand which increases the C-C-N angles so that formation of 5-membered chelate rings around Ni(II) becomes less favorable. This is supported by our earlier crystal structure determination of $Ni(\delta-HCQD)_2$.⁶ The isolation of $Cu(\beta-HCQD)_2 \cdot H_2 0 \cdot 1/2$ dioxane with N,N-coordination of the β -HCQD⁻ ligand was somewhat surprising because Cu(II) has the smallest ionic radius of the four metal ions used in these studies. Therefore the strain in the chelate ring should be greatest.

This result might be understood, however, by considering the M-N bond strength in the M(HDMG)₂ complexes, they are reported²⁰ to decrease in the order Pt(II)>Pd(II)> Cu(II)>Ni(II). The higher Cu-N bond strength presumably more than compensates for the strain in the 5-membered rings of Cu(β -HCQD)₂·H₂O·1/2 dioxane.

In the complexes $Pd(\beta-H_2CQD)Cl_2$, $Pt(\beta-H_2CQD)Cl_2$ and $Cu(\beta-H_2CQD)Cl_2$, the neutral $\beta-H_2CQD$ ligand also chelates through both N atoms. This type of compound exhibits a strong infrared absorption for coordinated v(C=N) between 1450-1400 cm⁻¹.

In the complexes $Pd(\gamma-H_2CQD)_2Cl_2$, $Pd(\delta-H_2CQD)_2Cl_2$ and $Pd(\alpha-H_2CQD)_2Cl_2$, the H_2CQD ligand coordinates through only one of its N atoms. Since our attempts to synthesize similar Pd complexes from H_2DMG and H_2CHD were unsuccessful, the $Pd(H_2CQD)_2Cl_2$ complexes are the first reported examples of a monodentate α -dioxime ligand. This type of complex is probably stabilized to some extent by the formation of inter- or intramolecular H-bonding as in the case of bis(cyclohexanone oxime)palladium dichloride.³⁰ Finally, in $[Pt(\gamma-HCQD)(\gamma-H_2CQD)Cl]_2$ and $Ni(\delta-HCQD)_2(\delta-H_2CQD)_2$, the ligands also appear to coordinate as monodentate ligands but in the unusual proposed structures shown in Figures 9 and 13.

REFERENCES AND NOTES

- 1. Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.
- Holm, R. H.; O'Connor, M. J. <u>Progress Inorg. Chem.</u> <u>1971</u>, 14, 277.
- 3. Schrauzer, G. N. <u>Angew. Chem. Int. Edit. Eng.</u> <u>1976</u>, 15, 417.
- 4. Miller, J. S.; Epstein, A. J. <u>Progress Inorg. Chem.</u> <u>1976</u>, 20, 100.
- 5. Thomas, T. W.; Underhill, A. E. <u>Chem. Soc. Rev.</u> <u>1972</u>, 1, 99.
- Ma, M. S.; Angelici, R. J.; Powell, D.; Jacobson, R. A. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1978</u>, 100, 7068.
- 7. Nakamura, A.; Konishi, A.; Tatsuno, Y.; Otsuka, S. J. <u>Am. Chem. Soc. 1978</u>, 100, 3443.
- 8. Nakamura, A.; Konishi, A.; Tsujitani, R.; Kudo, M.; Otsuka, S. J. <u>Am. Chem. Soc. 1978</u>, 100, 3449.
- 9. Nakamura, A.; Konishi, A.; Otsuka, S. J. <u>Chem. Soc.</u> D. <u>1979</u>, 488.
- Rechani, P. R.; Nakon, R.; Angelici, R. J. <u>Bioinorg</u>. <u>Chem</u>. <u>1976</u>, 5, 329.
- 11. Bedell, S. A.; Rechani, P. R.; Angelici, R. J.; Nakon, R. Inorg. Chem. 1977, 16, 972.
- 12. Doyle, J. R.; Slade, P. E.; Jonassen, H. B. <u>Inorg</u>. <u>Syn</u>. <u>1960</u>, 6, 218.
- 13. Church, M. J.; Mays, M. J. <u>Inorg. Nucl. Chem</u>. <u>1971</u>, 33, 253.
- 14. Forster, M. O. J. Chem. Soc. 1913, 103, 666. Forster, M. O. J. Chem. Soc. 1903, 83, 514.
- 15. Daniel, A.; Pavia, A. A. Tetrahedron Lett. 1967, 1145.
- 16. Ma, M. S.; Jacobson, R. A.; Angelici, R. J. Unpublished work, Iowa State University.

- 17. Satpathy, S.; Saboo, B. <u>Inorg. Nucl. Chem. 1971</u>, 33, 1313.
- 18. Bose, K. S.; Patel, C. C. <u>Inorg. Nucl. Chem</u>. <u>1971</u>, 33, 2947.
- 19. Mikhelson, P. B.; Evtushenko, N. P. <u>Russian Inorg</u>. <u>Chem</u>. <u>1970</u>, 15, 790.
- 20. Bigotto, A.; Costa, G.; Galasso, V.; Alti, G. De. Spectrochim. <u>Acta</u> <u>1970</u>, 26, 1939.
- 21. Blinc, R.; Hadzi, D. J. Chem. Soc. 1958, 4536.
- 22. Wiersema, A. K.; Windle, J. J. J. Phys. Chem. 1964, 68, 2316.
- 23. Vaciago, A.; Zambonelli, L. <u>J. Chem. Soc. A</u> <u>1970</u>, 218.
- 24. Caton, J. E., Jr.; Banks, C. V. Talanta 1966, 13, 967.
- 25. Svedung, D. H. Acta Chemica Scand. 1969, 23, 2865.
- 26. Sen, B.; Malone, D. M. <u>Inorg</u>. <u>Nucl</u>. <u>Chem</u>. <u>1972</u>, 34, 3509.
- 27. Marov, I. N.; Panfilo, A. T.; Zvanova, E. I.; Plekanov, N. A. <u>Koordinatsionnaya</u> <u>Khimiya</u> <u>1975</u>, 11, 1516.
- 28. Alti, G. De.; Galasso, V.; Bigotto, A. <u>Inorg</u>. <u>Chim</u>. <u>Acta</u> <u>1970</u>, 26, 267.
- 29. Busch, D. H.; Krause, R. A.; Jicha, D. C. J. <u>Am.</u> <u>Chem. Soc. 1961</u>, 83, 528.
- 30. Tanimura, M.; Mizushima, T.; Kinoshita, Y. <u>Bull.</u> <u>Chem. Soc. Japan 1967</u>, 40, 2777.

SECTION III. COORDINATION CHEMISTRY OF BIS(δ-CAMPHOR-QUINONEDIOXIMATO)Ni(II) AND Pd(II). REACTIONS AND STRUCTURAL STUDIES OF SOME M₃Ag₃ CLUSTER COMPLEXES OF CAMPHOR-QUINONEDIOXIME

INTRODUCTION

Our earlier work,^{1,2} as well as that of Nakamura et al.,³ showed that α - and δ -camphorquinonedioximes (H₂CQD) form square planar Ni(II) and Pd(II) complexes by chelating the metal ions using nitrogen and oxygen donor atoms. The structure¹ of Ni(δ -HCQD)₂ is shown in Figure 1.

Figure 1. Structure of $Ni(\delta - HCQD)_2$.

In the present paper, we report the reactions of $Ni(\delta-HCQD)_2$ and $Pd(\delta-HCQD)_2$ with AgNO₃ to form hexanuclear clusters of the composition $[M(\delta-HCQD)_2Ag]_3$, where M is Ni(II) or Pd(II). Results of crystallographic studies on both of these complexes are described. It has also been found that $Ni(\delta-HCQD)_2$ reacts with pyridine to give an adduct whose proposed structure is related to that of the clusters.

EXPERIMENTAL SECTION

<u>Spectral data</u> Proton NMR spectra were obtained using a Varian HA-100 spectrometer with TMS as the internal reference and CDCl₃ as the solvent. The ¹³C NMR spectra were recorded on a Jeol FX-90Q ¹³C NMR/¹H NMR spectrometer. Infrared spectra were obtained on KBr pellets using a Beckman IR-4250 ($4000-200 \text{ cm}^{-1}$) spectrophotometer. Electronic spectra were recorded on a JASCO-ORD/UV-5 or Cary 14 spectrophotometer.

<u>Starting materials</u> The complexes $Pd(\delta-HCQD)_2$, Ni(δ -HCQD)₂ and Ni(α -HCQD)₂ were prepared according to published procedures.² The Pd(PhCN)₂Cl₂ was prepared by the method of Doyle, et al.⁴

<u>Preparation of $[Ni(\delta-HCQD)_2Ag]_3 \cdot 2 1/2CHCl_3</u> To$ $3 ml of a CHCl_3 solution containing 0.05 g (0.11 mmol)$ $of Ni(<math>\delta$ -HCQD)₂, approximately 5 ml of 0.05 M aqueous AgNO₃ solution was added. The two solution layers were mixed together by adding MeOH (15 ml) until a homogeneous solution was obtained. The resulting green solution was allowed to evaporate overnight at room temperature. After 24 hrs. green needlelike crystals were obtained. Yield 90%. IR(KBr): ν (C=N) at 1615 cm⁻¹, 1560. ¹H NMR(CDCl₃): δ 3.20(m), C4-H; 1.12(s), 0.86(s), 0.78(s), Me. ¹³C NMR-(CDCl₃): 153.76, 153.49, 147.42, 147.31, oxime C; 20.0,</u>
17.35, ll.99, Me. UV-VIS maxima (CHCl₃): 620 nm(5.3 X l0 cm⁻¹M⁻¹), 402 (l.2 X l0³), 305 (l.5 X l0⁴). Anal. [Ni(C₂₀H₂₉N₄O₄)Ag]₃.2 l/2CHCl₃, C, H, N, Cl; Ag: Calcd., 16.50; found, 17.13. m.p. > 300° C.

Preparation of $[Pd(\delta-HCQD)_2Ag]_3 \cdot 2CHCl_3$ Yellow crystals of $[Pd(\delta-HCQD)_2Ag]_3 \cdot 2CHCl_3$ were prepared using the same procedure for $[Ni(\delta-HCQD)_2Ag]_3 \cdot 2 \ 1/2CHCl_3$ substituting $Pd(\delta-HCQD)_2$ for $Ni(\delta-HCQD)_2$. Yield 80%. $IR(KBr): \ v(C=N)$ at 1605 cm⁻¹, 1550. ¹H NMR(CDCl_3): $\delta 3.31(m), C4-H; 1.24(s), 0.90(s), 0.78(s), Me.$ ¹³C NMR-(CDCl_3): 153.70, 142.49, oxime C; 20.05, 17.40, 12.58, Me. UV-VIS maxima (CHCl_3): 362 nm(1.8 X 10³ cm⁻¹M⁻¹). Anal. $[Pd(C_{20}H_{29}N_4O_4)Ag]_3 \cdot 2CHCl_3, C, H, N, Ag; C1: Calcd.,$ 10.36; found, 7.22. m.p. > 300° C.

Preparation of Ni(α -HCQD)₂Ag·1/2AgNO₃ This complex was prepared in the same manner as [Ni(δ -HCQD)₂Ag]₃·2 1/2CHCl₃ substituting Ni(α -HCQD)₂ for Ni(δ -HCQD)₂. Yield 90%. IR(KBr): ν (C=N) at 1615 cm⁻¹, 1550. UV-VIS maxima (CHCl₃): μ O2 nm, 3O2. Anal. Ni(C₂₀H₂₉N₄O₄)Ag·1/2AgNO₃, C, H, N, Ag.

<u>Preparation of $Pd(\alpha-HCQD)_2Ag\cdot1/2AgNO_3</u>$ To 20 ml of MeOH containing 0.32 mmol of $\alpha-H_2CQD$, an equivalent amount of Et₃N (0.32 mmol) was added, followed by 0.16 mmol of Pd(PhCN)₂Cl₂. After stirring at 50° C for 2-3 hrs., the yellow solution was filtered and cooled to room temperature.</u> Then aqueous AgNO₃ (0.05 M) was added until no further precipitation of AgCl was observed. The solution was then filtered into a flask containing 10 ml of CHCl₃. Upon allowing the solution to stand overnight, the product $Pd(\alpha-HCQD)_2Ag\cdot1/2AgNO_3$ crystallized out as pale yellow microcrystals. Yield 80%. IR(KBr): ν (C=N) at 1600 cm⁻¹, 1550. UV-VIS maximum (CHCl₃): 362 nm. Anal. $Pd(C_{20}H_{29}N_4O_4)Ag\cdot1/2AgNO_3$, C, H, N; Ag: Calcd., 23.35; found, 22.59.

<u>Preparation of $[Ni(\delta-HCQD)_2(Py)_2] \cdot CHCl_3</u>$ This complex was prepared by dissolving 0.05 g (0.11 mmol) of $Ni(\delta-HCQD)_2$ in 20 ml of H₂O/MeOH/CHCl₃ (1:3:1) to which 1 ml of pyridine (Py) was added. After allowing the solution to stand at room temperature for several days, green crystals of $[Ni(\delta-HCQD)_2(Py)_2] \cdot CHCl_3$ were obtained. Yield 80%. IR(KBr): $\nu(C=N)$ at 1610 cm⁻¹, 1558. UV-VIS maxima (CHCl₃): 614 nm(5.8 X 10 cm⁻¹M⁻¹), 296 (1.4 X 10⁴). $\Lambda(CH_3CN)$: 0.534 cm²ohm⁻¹M⁻¹ at 25° C.</u>

 $\frac{\text{Crystal data}}{\text{mol. wt. 1832.40, orthorhombic } P_{2_1 2_1 2_1}, a = 15.990(5),}$ b = 38.44(1), c = 13.437(5) Å, V = 8260.97 Å³, P_c = 1.474 g/cm³, Z = 4, μ = 8.36 cm⁻¹ for Mo-K_a. [Pd(δ -HCQD)₂Ag]₃·l.1CHCl₃: mol. wt. 1945.62, orthorhombic P₂₁₂₁₂₁, a = 16.110(6), b = 38.92(1), c = 13.393(3) Å, V = 8395.55 Å³, P_c = 1.540 g/cm³, Z = 4, μ = 17.7 cm⁻¹ for Mo-K_{α}. Both complexes are formulated according to the results of their X-ray structure studies. The [Ni(δ -HCQD)₂Ag]₃·1/2H₂O·1.3CHCl₃ cluster will be referred to as Ni-Ag, while [Pd(δ -HCQD)₂Ag]₃·1.1CHCl₃ will be designated Pd-Ag in the discussion below.

A 0.36 X 0.19 X 0.16 mm single crystal of Ni-Ag and a 0.30 X 0.08 X 0.10 mm crystal of Pd-Ag were used in the collection of X-ray intensity data. In each case, 12-15 independent reflections taken from four preliminary w-oscillation photographs at various χ and ϕ settings were input to the automatic indexing program ALICE.⁵ The resulting reduced cell and reduced cell scalars indicated $P_{2_12_12_1}$ (orthorhombic) symmetry in both cases. This was confirmed by inspection of axial w-oscillation photographs which showed mmm symmetry in both Ni-Ag and Pd-Ag. The final lattice constants were obtained using least squares refinement based on the precise \pm 20 measurement of 13 independent reflections with $|2\theta| > 20^{\circ}$ for Ni-Ag and 15 independent reflections with $|2\theta| > 30^{\circ}$

Collection and reduction of X-ray intensity data The data were collected at 25° C using graphite monochromated Mo-K_{α} radiation on an automated four circle diffractometer

designed and built at the Ames Laboratory and previously described by Rohrbaugh and Jacobson.⁶ All data (4412 reflections for Ni-Ag and 6524 reflections for Pd-Ag) within a 20 sphere of 40° in the case of Ni-Ag and 60° in the case of Pd-Ag in the hkł octant were measured using an w-stepscan technique.

As a general check on electronic and crystal stability, the intensities of three standard reflections were measured every seventy-five reflections. These standard reflections were not observed to vary significantly throughout the data collection period (~6 days) for the Pd-Ag complex but indicated considerable decay for the Ni-Ag complex in the last 1025 reflections. The decay as measured from the standard reflections was found to fit a quadratic polynomial by least squares method: y(x) = 5979 + $(-0.2615)x + (-0.0007267)x^2$. Subsequently all reflections after the first 3375 in the Ni-Ag complex were divided by $\frac{y(x)}{y(0)} = 1.0 + (-0.4374 \times 10^{-5})x + (-1.216 \times 10^{-7})x^2$ to account for the decay correction.

Examination of data revealed systematic absences of h00, 0k0, 00 ℓ reflections for h = 2n + 1, k = 2n + 1, ℓ = 2n + 1 in the Ni-Ag and Pd-Ag structures, thus uniquely defining the space group $P_{2_12_12_1}$ in both cases. The intensity data were corrected for Lorentz and polarization effects. An absorption correction was applied to the data of the Pd-Ag complex, but no such correction was necessary for the Ni-Ag complex. The estimated error in each intensity was calculated by $\sigma_I^2 = C_T + K_t C_B + (0.03 C_T)^2 + (0.03 C_B)^2$, where C_T , K_t , and C_B represent the total count, a counting time factor and background count, respectively, and the factor 0.03 represents an estimate of nonstatistical errors. The estimated deviations in the structure factors were calculated by the finite difference method.⁷ Since only one octant of data was collected in each case, no averaging of data was required. While 3021 reflections with $I_0 > 3\sigma(I)$ from Ni-Ag were retained for structural solution and refinement, 6112 reflections from Pd-Ag were retained.

Solution and refinement of the structures The positions of the heavy atoms in the asymmetric unit were obtained from an analysis of a standard sharpened three dimensional Patterson map.⁷ The remaining non-hydrogen atoms were found by successive structure factor and electron density map calculation.⁸ A block matrix least squares procedure⁹ was used to refine the atomic positional parameters with anisotropic thermal parameters for the heavy atoms but isotropic thermal parameters for the remaining non-hydrogen atoms to conventional discrepancy factors of R = $\Sigma ||F_0| - |F_c|| / \Sigma |F_0|| = 10.7$ and 11.4 and weighted R values

of 12.7 and 15.0 for the Ni-Ag and Pd-Ag structures, respectively, using weights of $\frac{1}{(\sigma_{\rm F})^2}$. There appeared to be two regions for CHCl3 and one site for H2O in the Ni-Ag structure, but three regions for CHCl3 were observed in the structure of Pd-Ag. The CHCl3 molecules in both structures were disordered with respect to positions and occupation, and the C-Cl bond distances varied from 1.34-2.05 Å. Therefore occupation and thermal parameters for the solvent sites were estimated from successive electron density difference maps. Hydrogen positions in the terminal methyl groups and in the bicyclic rings were calculated using a 1.07 Å C-H bond distance and tetrahedral H-C-H angles in both Ni-Ag and Pd-Ag. They were included but not refined during the last least squares refinement cycles. The scattering factors for non-hydrogen atoms were those of Hanson et al., 10 modified by the real and imaginary parts of anomalous dispersion.¹¹ Scattering factors for Ni(II), Pd(II) and Ag(I) were those of Thomas and Umeda. 12 Hydrogen scattering factors were those of Stewart, et al.¹³ The final positional and thermal parameters for the Ni-Ag and Pd-Ag structures are listed in Tables I and II, respectively.

Table I. Final atomic parameters of the Ni-Ag structure

 (a) Final positional parameters and isotropic thermal parameters (B) of the light atoms and their estimated standard deviations (in parentheses)

	X	Y	Z	В
Agl	0.2093(2)	0.1705(1)	-0.0952(3)	
Ag2	0.3188(2)	0.1124(1)	-0.1801(3)	
Ag3	0.4230(2)	0.0530(1)	-0.2658(3)	
Nil	0.4713(4)	0.1239(2)	0.0159(5)	
Ni2	0.1326(4)	0.0568(2)	-0.1905(5)	
Ni3	0.3937(4)	0.1704(2)	-0.3759(4)	
101	0.4422(18)	0.0951(7)	-0.0944(23)	5.0(7)
102	0.6331(19)	0.1170(8)	0.1003(25)	6.2(8)
103	0.5524(21)	0.1625(9)	0.1716(26)	7.4(9)
104	0.3700(19)	0.1418(8)	-0.0279(23)	5.3(7)
INI	0.4795(23)	0.0620(10)	-0.1228(29)	5.4(9)
lN2	0.5747(25)	0.1038(9)	0.0399(29)	5.6(9)
1N3	0.4795(23)	0.1588(9)	0.1187(29)	5.0(9)
lN4	0.3152(22)	0.1676(9)	0.0088(26)	5.2(8)
1010	0.5666(37)	0.0005(15)	-0.1742(46)	7.9(16)
1011	0.5987(27)	0.0218(11)	-0.0934(34)	5.0(10)
1012	0.5451(29)	0.0515(13)	-0.0769(36)	4.9(12)
1013	0.5972(27)	0.0710(11)	0.0084(32)	4.6(10)
1C14	0.6786(33)	0.0491(14)	0.0180(40)	6.3(13)
1C15	0.6392(35)	0.0198(14)	0.0848(44)	7.7(15)
1C16	0.5909(32)	0.0020(13)	0.0047(39)	6.4(13)
1C17	0.6834(38)	0.0359(15)	-0.0830(48)	7.5(16)
1C18	0.7012(34)	0.0579(14)	-0.1699(43)	7.3(14)
1C19	0.7529(33)	0.0062(13)	-0.0904(40)	6.9(13)

	X	Y	Z	B
1C 2 0	0.1959(34)	0.2097(14)	0.1276(42)	6.9(14)
1051	0 . 2937(33)	0.2093(13)	0.1471(39)	6.3(13)
1022	0.3422(28)	0.1816(12)	0.0903(36)	5.9(11)
1023	0.4188(27)	0.1793(10)	0.1414(30)	4.3(10)
1C24	0.4175(31)	0.2034(12)	0.2243(36)	5.2(12)
1025	0.4248(35)	0.2382(14)	0.1791(43)	8.4(14)
1C26	0.3418(29)	0.2432(12)	0.1119(37)	5.5(12)
1C27	0.3221(28)	0.2037(12)	0.2568(34)	4.8(11)
1C28	0.2953(32)	0.1685(14)	0.2991(39)	6.4(13)
1C29	0.2920(42)	0.2307(17)	0.3259(53)	9.4(19)
201	0.2441(17)	0.0572(7)	-0.2207(20)	4.2(6)
202	0.0350(24)	0.0006(10)	-0.2628(30)	7.5(10)
203	-0.0342(22)	0.0353(9)	-0.1395(27)	8.4(10)
204	0.1677(16)	0.1016(7)	-0.1442(20)	4.5(7)
2N1	0.2948(22)	0.0339(9)	-0.2699(28)	5.2(9)
SN5	0.1167(20)	0.0143(8)	-0.2601(25)	5.5(9)
2N3	0.0271(23)	0.0614(10)	-0.1374(28)	3.9(8)
2N4	0.1224(23)	0.1269(9)	-0.1081(29)	4.9(9)
2010	0.3948(33)	-0.0268(13)	-0.3559(39)	6.3(13)
5C11	0.2986(31)	-0.0229(12)	-0.3757(38)	6.0(12)
5015	0 . 2535(28)	0.0089(11)	-0.3081(36)	4.5(11)
2013	0.1661(28)	-0.0011(12)	-0.3125(38)	5.0(11)
2C14	0.1602(30)	-0.0351(12)	-0.3694(37)	5.3(12)
2015	0 . 1790(34)	-0.0217(14)	-0.4662(42)	7.6(14)
2016	0.2642(39)	-0.0143(15)	-0.4752(48)	8.7(17)
2C17	0 . 2388(37)	-0.0522(16)	-0.3372(46)	8.4(16)
2C18	0.2574(42)	-0.0868(16)	-0.4012(53)	9.2(18)
2019	0.2474(34)	-0.0628(14)	-0.2316(42)	7.4(15)

	Х	Ŷ	Z	В
5050	0.0064(33)	0.1843(13)	-0.0426(41)	6.4(14)
2021	-0.0207(34)	0.1459(14)	-0.0266(41)	6.8(14)
2022	0.0456(30)	0.1213(13)	-0.0818(38)	5.7(12)
2023	-0.0004(26)	0.0882(11)	-0.0871(33)	4.1(10)
2024	-0.0959(29)	0.0944(11)	-0.0466(35)	5.0(11)
2025	-0.0732(38)	0.0948(14)	0.0663(45)	8.5(16)
2026	-0.0207(35)	0.1328(14)	0.0836(43)	6.8(14)
2027	-0.1014(34)	0.1357(13)	-0.0798(41)	6.1(14)
2028	-0.1003(32)	0.1389(12)	-0.1850(39)	6.2(13)
2029	-0.1834(37)	0.1483(15)	-0.0230(45)	8.5(16)
301	0.4007(18)	0.1247(7)	-0.3379(21)	4.8(7)
302	0.5043(19)	0.1934(8)	-0.5306(24)	5.7(8)
303	0.4149(22)	0.2343(8)	-0.4723(25)	6.8(8)
304	0.3154(18)	0.1706(8)	-0.2693(22)	5.2(7)
3N1	0.4524(22)	0.0974(9)	-0.3632(28)	5.2(9)
3N2	0.4751(20)	0.1645(8)	-0.4718(24)	3 . 7(8)
3N3	0.3720(19)	0.2162(8)	-0.4004(24)	3.2(7)
3N4	0.2671(23)	0.1947(10)	-0.2356(28)	4.7(9)
3010	0.5395(34)	0.0397(14)	-0.4584(42)	6.7(14)
3011	0.5639(28)	0.0762(11)	-0.4849(33)	4.5(10)
3012	0.4991(28)	0.1057(12)	-0.4437(36)	4.9(11)
3013	0.5107(36)	0.1379(14)	-0.4916(43)	6.5(15)
3C14	0.5769(30)	0.1313(11)	-0.5723(34)	5.2(11)
3015	0.6617(31)	0.1254(13)	-0.5082(38)	6.1(13)
3016	0.6442(33)	0.0913(14)	-0.4515(41)	5.9(14)
3017	0.5593(36)	0.0953(14)	-0.5972(46)	7.7(15)
3018	0.4772(33)	0.0913(13)	-0.6463(40)	7.4(14)
3019	0.6206(32)	0.0758(13)	-0.6605(39)	6.4(13)

		γ	7.	
		<u></u>		
3020	0.1713(38)	0.2504(16)	-0.1438(45)	9.4(17)
3021	0.2108(26)	0.2565(10)	-0.2434(32)	3.9(10)
3022	0.2678(27)	0.2237(11)	-0.2734(34)	4.9(11)
3023	0.3136(30)	0.2354(12)	-0.3633(36)	5.6(12)
3024	0.2921(30)	0.2748(12)	-0.3695(37)	5.6(12)
3025	0.2035(41)	0.2728(16)	-0.4115(52)	9.8(18)
3026	0.1468(30)	0 .2 599(12)	-0.3211(38)	5.9(12)
3027	0.2739(33)	0.2838(13)	-0.2640(41)	6.6(14)
3c28	0.3526(36)	0.2812(15)	-0.1931(45)	7.8(15)
3029	0.2323(33)	0.3215(14)	-0.2598(42)	7.4(14)
$1Cel^{a}(0.4)^{b}$	0.5515(27)	0.2176(12)	-0.2676(34)	7.0
1022(0.4)	0.6120(22)	0.1534(9)	-0.2148(26)	7.0
1Cl3(0.4)	0.5810(24)	0.2004(9)	-0.0690(28)	7.0
1Cl4(0.25)	0.6242(31)	0.1758(13)	-0.1071(40)	7.0
1015(0.25)	0.5138(32)	0.2174(13)	-0.0980(41)	7.0
1Cł6(0.25)	0.5787(34)	0.2081(14)	-0.2846(40)	7.0
lCS1(0.4)	0.5533(73)	0.1934(30)	-0.1930(95)	7.0
1CS2(0.25)	0.5731(132)	0.2042(55)	-0.2743(167)	7.0
2C21(0.4)	0.2510(21)	0.1022(9)	-0.4902(26)	7.0
2012(0.4)	0.1438(21)	0.1527(9)	-0.4040(26)	7.0
2013(0.4)	0.1095(21)	0.0815(9)	-0.4340(26)	7.0
2Cl4(0.25)	0.0774(34)	0.1022(13)	-0.3785(41)	7.0
2015(0.25)	0.2171(37)	0.0922(15)	-0.4421(45)	7.0
2Cl6(0.25)	0.1878(36)	0.1528(14)	-0.4734(43)	7.0

^aOnly 1.3 CHCl₃ rather than 2 1/2 CHCl₃ as indicated by elemental analyses was observed on an electron density difference map.

^bMultiplier used.

Table I. (continued)

	Х	Y	Z	В	
2CS2(0.25)	0.1883(121)	0.1171(51)	-0.4164(152)	7.0	
10S(0.55)	0.5187(37)	0.3270(16)	-0.3466(44)	7.0	

(b) Anisotropic thermal parameters (X 10⁵) of the heavy atoms and their estimated standard deviations (in parentheses)^C

	β_{ll}	β22	βзз	βı₂	β_{13}	ßes
Agl	396(18)	69(3)	805(29)	3(6)	-48(20)	18(9)
Ag2	400(16)	58(3)	718(26)	0(6)	24(19)	32(8)
Ag3	411(17)	67(3)	793(29)	0(7)	-41(21)	24(8)
Nil	390(30)	58(5)	709(47)	-6(11)	8(34)	-2(14)
Ni2	404(30)	55(5)	676(45)	-7(10)	-44(33)	18(14)
Ni3	429(31)	57 (5)	633(44)	13(11)	-55(31)	-2(14)

^c The β ij are defined by: $T = \exp\{-(h^2\beta_{11} + k^2\beta_{22} + 1^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})\}.$

Table II. Final atomic parameters of the Pd-Ag structure

 (a) Final positional parameters and isotropic thermal parameters (B) of the light atoms and their estimated standard deviations (in parentheses)

Atom	Х	Y	Z	В
Agl	0.29459(13)	0.32877(5)	0.40075(20)	
Ag2	0.18500(12)	0.38870(5)	0.30904(19)	
Ag3	0.07899(13)	0.44983(5)	0.21672(20)	
Pdl	0.02627(13)	0.37629(5)	0.49885(20)	
Pd2	0.37097(12)	0.44287(4)	0.29997(19)	
Pd3	0.10885(13)	0.33064(5)	0.11501(19)	
101	0.0538(11)	0.4079(5)	0.3827(17)	4.5(4)
102	-0.1388(12)	0.3859(5)	0.5920(17)	5.7(4)
103	-0.0548(13)	0.3389(5)	0.6592(18)	6.1(5)
104	0.1379(11)	0.3573(4)	0.4567(15)	4.6(4)
lNl	0.0174(14)	0.4387(6)	0.3597(20)	4.4(5)
1N2	-0.0812(15)	0.4000(6)	0.5254(20)	5.2(5)
lN3	0.0151(15)	0.3414(6)	0.6090(21)	4.8(5)
lN4	0.1784(13)	0.3339(5)	0.5103(17)	3.8(4)
1010	-0.0710(24)	0.5017(10)	0.3055(34)	7.1(9)
1011	-0.1012(22)	0.4808(9)	0.3946(31)	6.9(8)
1012	-0.0516(17)	0.4463(7)	0.4056(24)	4.8(6)
1013	-0.0987(17)	0.4291(7)	0.4849(24)	5.3(6)
1 C14	-0.1820(19)	0.4494(8)	0.4961(27)	5.2(7)
1015	-0.1500(18)	0.4783(7)	0.5686(26)	5.9(6)
1C16	-0.1018(24)	0.4983(10)	0.4895(34)	6.0(9)
1C17	-0.1916(17)	0.4646(7)	0.3893(24)	5.1(6)
1C18	-0.2584(28)	0.4938(10)	0.3913(35)	7.9(9)
1C19	-0.2074(21)	0.4408(8)	0.3138(30)	5.9(8)

Table	II.	(continued)

Atom	Х	Y Z		В
1C20	0.2931(21)	0.2897(8)	0.6230(28)	6.2(7)
1021	0.1966(19)	0.2900(8)	0.6360(27)	5.5(7)
1C22	0.1513(15)	0.3186(6)	0.5801(21)	3.8(5)
1023	0.0704(17)	0.3194(6)	0.6344(22)	3.7(6)
1C24	0.0667(19)	0.2956(7)	0.7120(26)	5.6(7)
1025	0.0635(25)	0.2599(10)	0.6574(33)	7.9(9)
1C26	0.1491(23)	0.2557(9)	0.6086(33)	6.6(11)
1C27	0.1582(20)	0.2966(8)	0.7466(28)	6.8(7)
1C28	0.1851(28)	0.2655(11)	0.8196(40)	9.1(10)
1C29	0.1890(25)	0.3314(10)	0.7868(35)	8.6(10)
201	0.2493(11)	0.4438(4)	0.2654(14)	4.2(3)
202	0.4695(14)	0.5007(6)	0.2286(19)	6.5(5)
203	0.5397(14)	0.4623(5)	0.3444(19)	6.4(5)
204	0.3324(11)	0.3972(4)	0.3522(15)	4.3(4)
SNI	0.2095(14)	0.4679(5)	0.2114(20)	4.4(5)
2N2	0.3946(14)	0.4872(5)	0.2307(19)	5.2(5)
2N3	0.4820(14)	0.4380(5)	0.3530(20)	4.6(5)
2N4	0.3833(14)	0.3734(5)	0.3950(19)	4.6(5)
2010	0.1141(20)	0.5273(8)	0.1258(28)	6.3(7)
2011	0.2009(22)	0.5229(9)	0.1225(31)	7.6(8)
2012	0.2487(18)	0.4946(7)	0.1793(22)	3.3(6)
2013	0.3384(17)	0.5032(7)	0.1835(24)	4.4(6)
2C14	0.3457(19)	0.5374(7)	0.1285(27)	5.1(7)
2015	0.3389(23)	0.5248(9)	0.0164(33)	9.1(9)
2016	0.2388(26)	0.5142(9)	0.0145(36)	8.4(11)
2C17	0.2665(19)	0.5540(7)	0.1484(26)	5.0(7)
2C18	0.2593(21)	0.5650(8)	0.2586(29)	8.0(8)
2019	0.2433(27)	0.5889(10)	0.0930(40)	9.2(11)

Table II. (continued)

Atom	X	Y	Z	В
2020	0.4863(20)	0.3178(8)	0.4807(22)	5.9(7)
2021	0.5108(20)	0.3544(7)	0.4792(26)	5.2(7)
5055	0.4556(18)	0.3788(7)	0.4193(24)	5.0(6)
2023	0.5007(16)	0.4105(6)	0.4028(23)	4.4(6)
2C24	0.5904(22)	0.4043(9)	0.4445(31)	6.1(8)
2025	0.5799(26)	0.4074(11)	0.5594(37)	9.3(11)
2026	0.5201(23)	0.3698(9)	0.5794(31)	7.5(11)
2027	0.5891(17)	0.3652(7)	0.4299(23)	5.5(6)
2C28	0.6009(24)	0 . 3537(9)	0.3285(33)	6.4(9)
2C29	0.6710(21)	0.3482(8)	0.4723(29)	6.6(8)
301	0.1044(11)	0.3797(4)	0.1497(14)	4.3(4)
302	-0.0055(12)	0.3075(4)	-0.0418(16)	4.8(4)
303	0.0807(13)	0.2640(5)	0.0248(17)	5 . 8(4)
304	0.1923(12)	0.3334(5)	0.2219(16)	5.4(4)
3Nl	0.0535(15)	0.4037(6)	0.1110(22)	5.0(6)
3N2	0.0226(14)	0.3360(5)	0.0113(19)	4.6(5)
3N3	0.1271(14)	0.2803(5)	0.0880(19)	4.8(5)
3N4	0.2423(15)	0.3059(6)	0.2600(20)	4.7(5)
3010	-0.0294(21)	0.4603(8)	-0.0069(29)	6.1(8)
3011	-0.0523(19)	0.4229(8)	-0.0055(27)	5.5(7)
3012	0.0084(17)	0.3964(7)	0.0450(24)	3.8(6)
3013	-0.0131(18)	0.3631(7)	-0.0104(25)	4.7(6)
3C14	-0.0791(19)	0.3680(7)	-0.0824(25)	5.2(6)
3C15	-0.1574(21)	0.3756(8)	-0.0252(28)	7.3(8)
3016	-0.1415(24)	0.4096(10)	0.0297(35)	6.1(11)
3C17	-0.0594(19)	0.4078(8)	-0.1209(28)	5.4(7)
3018	-0.1196(22)	0.4251(9)	-0.1782(31)	7.4(8)
3019	0.0282(24)	0.4066(9)	-0.1674(33)	5.8(9)

Atom	X	Y	Z	В
3020	0.3304(23)	0.2486(9)	0.3504(32)	6.2(8)
3021	0.2868(20)	0.2450(8)	0.2503(27)	6.4(7)
3022	0.2355(15)	0.2751(6)	0.2164(21)	4.0(5)
3023	0.1806(20)	0.2640(8)	0.1393(27)	5.3(7)
3C24	0.2027(21)	0.2254(8)	0.1267(30)	6.7(7)
3025	0.2923(24)	0.2262(9)	0.0765(32)	8.7(9)
3026	0.3535(28)	0.2368(10)	0.1631(39)	8.9(11)
3027	0.2208(17)	0.2163(7)	0.2324(23)	5.4(6)
3028	0.1461(22)	0.2176(9)	0.3047(32)	6.6(8)
3029	0.2689(26)	0.1818(10)	0.2386(36)	9.1(11)
Cl(0.5) ^a	0.4331(58)	0.1914(23)	0.7051(83)	7.0
C2(0.5)	0.0674(101)	0.1194(38)	0.0101(134)	7.0
C3(0.5)	0.3183(99)	0.3863(39)	0.0533(132)	7.0
1Ce1 ^b (0.3)	0.3849(26)	0.1535(10)	0.7298(35)	7.0
1012(0.3)	0.4417(26)	0.2198(10)	0.7784(36)	7.0
1013(0.3)	0.4131(27)	0.2016(10)	0.5840(35)	7.0
1014(0.2)	0.4698(39)	0.2153(15)	0.6025(54)	7.0
1015(0.2)	0.4110(39)	0.2101(15)	0.7906(55)	7.0
1016(0.2)	0.3655(39)	0.1840(16)	0.6142(54)	7.0
2021(0.3)	0.1124(26)	0.1054(10)	0.0956(36)	7.0
2012(0.3)	0.1146(26)	0.1545(10)	0.9719(35)	7.0

Table II. (continued)

^aMultiplier used.

_ _ .

^bOnly l.l CHCl₃ rather than 2 CHCl₃ as indicated by elemental analyses was observed on an electron density difference map.

Table II. (continued)

Atom	Х	Y	Z	В
2Cl3(0.3)	0.1121(25)	0.0879(10)	0.9116(36)	7.0
3Cl1(0.3)	0.3716(27)	0.4213(10)	0.0355(36)	7.0
3Cl2(0.3)	0.3964(26)	0.3616(10)	0.1439(36)	7.0
3Cl3(0.3)	0.2984(27)	0.3633(10)	-0.0138(36)	7.0

(b) Anisotropic thermal parameters (X 10⁴) of the heavy atoms and their estimated standard deviations (in parentheses)^C

	β_{ll}	β ₂₂	βзз	β_{12}	β_{13}	β ₂₃
Agl	37.0(9)	6.5(1)	80.2(18)	-0.3(3)	-3.7(12)	3.0(5)
Ag2	35.2(8)	5.8(1)	71.8(16)	-1.3(3)	-2.9(11)	7.9(4)
Ag3	35.2(8)	6.1(1)	80.3(19)	-0.9(3)	-5.3(11)	2.7(5)
Pdl	33,5(8)	5.6(1)	70.2(16)	-2.1(3)	-3.4(11)	1.9(4)
Pd2	34.4(9)	6.6(1)	67.9(16)	-0.5(3)	5.0(11)	0.3(5)
Pd3	41.4(9)	6.1(1)	64.2(16)	0.1(3)	-6.0(11)	-0.8(5)

^c The β ij are defined by: $T = \exp\{-(h^2\beta_{11} + k^2\beta_{22} + 1^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})\}.$

RESULTS AND DISCUSSION

Description of the structure $[Ni(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot$ 1.3CHCl₃, Ni-Ag The unit cell (Figure 2) of Ni-Ag consists of four hexanuclear molecules with CHCl3 and H2O molecules occupying interstitial sites. Each hexanuclear molecule (Figure 3) in turn consists of three individual $Ni(\delta-HCQD)_2$ ligands coordinated to a linear chain of three silver The δ -HCQD⁻ ligands form two 6-membered chelate atoms. rings with each of the three Ni(II) atoms. The observed coordination of the ligands to Ni via N and O rather than N,N atoms was established previously in Ni(δ -HCQD)¹ and probably is caused by the bicyclic nature of the ligand which increases the size of the C-C-N angles and thus favors 6-membered chelate ring formation. There are two types of Ag atoms in the cluster. Coordinated to the center Ag are six oxygen atoms, while there are three nitrogen atoms coordinated to each of the terminal silver atoms. Several interesting features of the structure are discussed below.

<u>Coordination around Ni</u> While the crystal structure¹ of Ni(δ -HCQD)₂ was found to have trans N₂O₂ square planar coordination around Ni (Figure 1), the δ -HCQD⁻ ligands in Ni-Ag coordinate to the Ni with a cis N₂O₂ geometry

Figure 2. The unit cell of $[Ni(\delta-HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3$ with the <u>a</u> axis vertical and the <u>b</u> axis horizontal.

Figure 3. Molecular structure of $[Ni(\delta-HCQD)_2Ag]_3$ with 50% probability ellipsoids for heavy atoms but 10% for light atoms. For clarity only the C atoms of the Ni2 unit are labelled but the adopted numbering scheme is also applied to the other two units.

• • •

...

(Figure 3). Thus, the addition of Ag^+ to $Ni(\delta-HCQD)_2$ has caused one ligand in $Ni(\delta-HCQD)_2$ to rotate such that the structure around the Ni changes from trans N_2O_2 to cis N_2O_2 .

The important bond distances and bond angles of the three Ni(δ -HCQD), units in Ni-Ag are summarized in Tables III and IV. The average Ni-N distance of 1.86(4) Å is comparable to 1.855(3) Å reported in the Ni(δ -HCQD), complex.¹ However, the average Ni-O distance of 1.87(3) Å is considerably longer than the 1.830(3) Å observed in $Ni(\delta-HCQD)_2$. This lengthening is presumably due to coordination of the Ag(I) to these 0 atoms. Also such coordination seems to affect the 0_4 -Ni- 0_1 angles (75.9(1), 77.2(1) and $80.5(1)^{\circ}$ so that they are consistently smaller than the other angles, 04-Ni-N3, N3-Ni-N2 and N2-Ni-O1, which are all greater than 90° in the three nickel anion ligands. The distances of the Ni atoms from the least squares planes (Table V) defined by $Ni-O_1-O_4-N_2-N_3$ are small, being only 0.04, 0.006 and 0.01 Å for the three units. The average C-C (1.53 Å), C=N (1.28 Å) and N-O (1.38 Å) distances of the ligands correspond well with those observed in the structures of $Ni(\delta-HCQD)_{2}^{1}$ and y-H2CQD.14

Table III. Interatomic distances (Å) and their estimated standard deviations

Per de la	Nil	Ni2	N13	Pdl	Pd2	Pd3
Agl-N4	2.198(35)	2.184(36)	2.298(38)	2.386(22)	2.249(21)	2.250(26)
Agl-04	2.939(31)	2.809(27)	2.890(30)	2 . 858(18)	2.808(16)	2.912(21)
Ag2-04	2.476(31)	2.498(26)	2.539(31)	2.445(19)	2.466(18)	2.450(20)
Ag2-01	2.379(29)	2.495(27)	2.537(29)	2.449(18)	2.454(16)	2.450(20)
Ag3-01	2.834(30)	2.929(27)	2.942(27)	2.787(20)	2.830(18)	2.902(16)
Ag3-Nl	2.154(39)	2.178(35)	2.200(36)	2.199(26)	2.217(22)	2.325(26)
M ^a -01	1.908(30)	1.828(28)	1.833(28)	2.033(19)	2.014(18)	1.967(16)
M-04	1.856(31)	1.915(28)	1.902(30)	2.024(18)	2.009(16)	1.968(21)
M-N2	1.853(40)	1.900(32)	1.846(33)	1.994(24)	1.996(21)	1.976(23)
M-N3	1.930(38)	1.840(<i>3</i> 7)	1.824(32)	2.014(26)	1.933(23)	2.015(20)
Ol-Nl	1.456(47)	1.377(45)	1.378(45)	1.369(28)	1.346(30)	1.346(30)
04-N4	1.412(46)	1.306(45)	1.288(48)	1.332(27)	1.365(28)	1.435(31)
N2-02	1.337(50)	1.409(50)	1.441(44)	1.399(33)	1.317(32)	1.396(29)

(in parentheses) for the Ni-Ag and Pd-Ag structures

^aCorresponds to the metal ions labelled on the top of each column.

<u></u>	Nil	Ni2	N13	Pdl	Pd2	Pa3
N3-03	1.373(50)	1.403(51)	1.374(46)	1.315(33)	1.332(31)	1.293(31)
N1-C12	1.282(60)	1.274(56)	1.352(60)	1.304(37)	1.289(35)	1.178(41)
N4-C22	1.294(59)	1.296(61)	1.225(57)	1.199(34)	1.227(37)	1.335(34)
N2-C13	1.378(55)	1.212(57)	1.200(63)	1.286(37)	1.268(36)	1.236(35)
N3-C23	1.287(55)	1.308(57)	1.290(56)	1.280(35)	1.296(35)	1.271(40)
C10-C11	1.453(75)	1.568(72)	1.499(69)	1.525(57)	1.409(48)	1.506(44)
C11-C12	1.445(65)	1.685(66)	1.633(63)	1.571(42)	1.546(45)	1.573(43)
C11-C16	1.527(68)	1.483(82)	1.479(69)	1.440(59)	1.607(62)	1.599(50)
C11-C17	1.465(74)	1.565(77)	1.680(75)	1.588(45)	1.642(45)	1.655(51)
C12-C13	1.603(64)	1.451(63)	1.407(72)	1.467(42)	1.485(40)	1.534(41)
C13-C14	1.555(68)	1.517(67)	1.536(74)	1.564(41)	1.524(41)	1.447(44)
C14-C15	1.572(78)	1.431(75)	1.622(69)	1.575(44)	1.584(56)	1.506(47)
C14-C17	1.451(83)	1.483(76)	1.451(69)	1.556(48)	1.454(41)	1.665(42)
c15-c16	1.491(77)	1.397(82)	1.542(74)	1,525(52)	1.535(52)	1.603(53)
C17-C18	1.470(84)	1,612(89)	1.477(79)	1.567(51)	1.541(51)	1.411(50)
C17-C19	1.596(78)	1.483(84)	1.499(78)	1.395(47)	1.593(52)	1.545(51)
C20-C21	1.586(76)	1.553(74)	1.498(74)	1.565(46)	1.478(42)	1.520(54)
C51-C55	1.522(69)	1.602(73)	1.607(58)	1.517(41)	1.527(43)	1.504(40)
с21-с2б	1.585(69)	1.564(79)	1.468(65)	1.580(48)	1.478(53)	1.619(60)

Table III. (continued)

han fan fan fan fan fan fan fan fan fan f	Nil	N12	N13	Pdl	Pd2	Pd3
C21-C27	1.557(69)	1.526(77)	1.482(65)	1.626(50)	1.610(43)	1.560(42)
C55-C53	1.407(62)	1.471(65)	1.482(65)	1.493(37)	1.450(37)	1.427(43)
C23-C24	1.449(62)	1.638(62)	1.555(65)	1.394(42)	1.570(45)	1.553(44)
C24-C25	1.474(72)	1.560(76)	1.527(82)	1.570(47)	1.552(64)	1.593(53)
C24-C27	1.587(67)	1.651(66)	1.488(74)	1.546(45)	1.536(46)	1.488(50)
C25-C26	1.617(74)	1.701(78)	1.595(84)	1.535(56)	1.772(54)	1.578(64)
C27-C28	1.529(70)	1.419(76)	1.582(79)	1.617(57)	1.431(53)	1.545(48)
C27-C29	1.473(82)	1.592(80)	1.596(74)	1.540(51)	1.491(44)	1.554(48)
02-03	2.375(46)	2.398(53)	2.265(45)	2.447(29)	2.433(33)	2.363(27)
01-04	2.314(42)	2.337(38)	2.413(41)	2.587(24)	2.537(24)	2.487(26)

Table IV. Bond angles (deg) and their estimated standard deviations

<u> </u>	Nil	Ni2	Ni3	Pdl	Pd2	Pd3
01-Ag2-04	56.88(99)	55.80(89)	56.78(90)	63.82(59)	62.09(56)	60.00(60)
Ag2-04-M ^a	112.4(14)	111.7(12)	109.7(13)	108.64(73)	109.56(75)	111.23(84)
Ag2-01-M	114.6(13)	115.2(13)	112.3(13)	108.15(70)	109.87(70)	108.41(73)
01-M-04	75.9(13)	77.2(12)	80.5(13)	79.22(68)	78.19(69)	78.41(78)
Ol-M-N2	96.4(15)	91.6(13)	91.9(13)	92.63(86)	93.60(80)	92.14(78)
04-m-n3	91.6(15)	93.2(14)	90.4(14)	92.15(86)	94.13(88)	94.87(87)
N2-M-N3	96.0(16)	98.7(16)	97.3(14)	96.0(10)	94.50(97)	94.56(88)
01-M-N3	167.4(14)	168.3(15)	170.7(15)	171.40(86)	170.47(88)	172.93(89)
04-m-n2	171.3(16)	166.5(13)	172.0(14)	171.96(90)	170.38(86)	170.63(80)
M-Ol-Nl	127.6(24)	132.4(23)	134.2(24)	127.5(16)	126.9(14)	127.1(16)
M-04-N4	133.7(25)	128.9(23)	131.4(27)	122.3(15)	124.2(14)	126.9(16)
M-N2-02	124.8(27)	177.3(25)	121.1(23)	120.5(17)	122.0(18)	120.1(15)
M-N3-03	120.0(27)	124.3(28)	121.4(24)	120.0(18)	123.0(18)	120.6(17)

(in parentheses) for the Ni-Ag and Pd-Ag structures

^aCorresponds to the metal ions labelled on the top of each column.

Table IV. (continued)

L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_	Nil	Ni2	N13	Pdl	Pd2	Pd3
M-N2-C13	124.1(31)	128.2(31)	126.4(35)	121.5(21)	121.3(19)	125.7(20)
M-N3-C23	123.0(31)	125.7(31)	128.3(30)	125.6(21)	119.0(18)	119.1(20)
01-N1-C12	119.0(38)	112.3(34)	110.4(32)	117.2(23)	120.4(23)	120.0(24)
N1-C12-C13	128.5(43)	135.7(43)	130.2(44)	132.8(26)	130.3(25)	134.8(27)
N1-C12-C11	131.3(45)	122.8(39)	117.2(37)	125.7(27)	119.7(26)	123.4(27)
N2-C13-C12	120.8(38)	118.3(42)	125.8(52)	126.4(26)	127.0(26)	120.1(28)
N2-C13-C14	133.5(40)	132.3(42)	128.6(48)	126.3(27)	127.9(25)	127.6(27)
02-N2-C13	110.6(35)	114.0(36)	112,4(38)	118.0(23)	116.6(23)	114.1(24)
C11-C12-C13	99.8(36)	101.4(36)	111.8(40)	101.2(24)	109.9(23)	101.6(24)
C12-C13-C14	104.0(36)	108.0(38)	105.6(42)	106.4(24)	104.8(23)	112.2(23)
C13-C14-C15	95.7(38)	97 . 8(40)	103.0(38)	98.0(23)	100.5(24)	107.5(28)
с14-с15-с1б	97.1(43)	110.9(49)	103.3(38)	95.9(27)	99.1(29)	107.8(27)
C15-C16-C11	110.6(41)	103.8(50)	110.0(42)	112.1(30)	107.6(32)	101.5(29)
C12-C11-C16	102.3(38)	99•5(39)	100.1(36)	108.9(31)	95.9(26)	100.4(25)
C12-C11-C17	104.0(40)	94.7(38)	88.5(33)	97.5(23)	95.7(24)	102.3(24)
C12-C11-C10	110.5(41)	113.4(38)	113.8(38)	111.6(29)	124.4(31)	119.1(26)
C16-C11-C17	100.7(41)	103.4(43)	98.0(38)	102.8(29)	95.8(26)	99•9(25)
C16-C11-C10	109.6(40)	122.6(45)	121.4(42)	116.2(30)	115.5(33)	121.5(28)
C17-C11-C10	127.3(46)	118.3(42)	127.7(40)	118.0(31)	122.9(28)	110.4(28)

·						
	Nil	N12	N13	Pdl	Pd2	Pd3
C13-C14-C17	99.0(42)	100.5(41)	100.8(41)	100.9(25)	103.3(25)	100.8(23)
C15-C14-C17	107.7(45)	104.3(44)	98.7(38)	109.0(25)	104.5(27)	97.6(22)
C11-C17-C14	99.8(46)	95.9(43)	101.6(42)	91.1(24)	101.5(23)	93.1(24)
C18-C17-C19	103.1(46)	105 . 5(48)	106.0(46)	111.6(28)	98 . 1(28)	115.0(32)
04-N4-C22	112.4(34)	120.2(36)	120.2(38)	126.2(22)	124.4(22)	118.0(23)
N4-C22-C23	132.6(42)	127.2(43)	128.2(42)	133.0(24)	125.6(26)	129.7(25)
N4-C22-C21	123.0(41)	130.9(44)	127.2(40)	125.3(24)	125.7(26)	121.4(25)
N3-C23-C22	125.4(39)	122.5(40)	119 . 9(40)	119.9(25)	131.7(26)	131.3(28)
N3-C23-C24	125.8(41)	126.8(37)	134.1(43)	127.8(28)	121.7(24)	125.3(30)
03-N3-C23	117.0(36)	109.8(35)	110.1(33)	114.2(25)	117.9(23)	120.1(23)
C21-C22-C23	104.0(39)	101.7(38)	104.3(34)	101.7(22)	108.5(24)	108.8(24)
C22-C23-C24	108.8(38)	108.9(35)	103.3(37)	112.3(23)	105.9(23)	103.3(26)
C23-C24-C25	105.2(40)	96.2(37)	100.1(40)	104.1(28)	103.9(29)	103.6(26)
c24-c25-c26	105.8(41)	104.8(41)	105.2(48)	105.2(28)	98 . 3(29)	105.1(33)
C25-C26-C21	97.7(37)	98 . 5(41)	100.0(40)	104.3(28)	104 . 6(30)	99.6(31)
C22-C21-C26	100.3(38)	104.4(41)	106.7(35)	105.3(26)	106.6(25)	107.5(28)
C22-C21-C27	103.2(39)	101.0(41)	97.0(34)	98.7(23)	97.6(23)	97.8(23)
c28-c27-c29	107.3(43)	117.5(46)	111.6(42)	111.2(31)	103.9(27)	112.5(28)
C26-C21-C27	104.7(39)	111.1(44)	106.2(38)	99.3(26)	100.2(25)	101.6(25)

Table IV. (continued)

	Nil	N12	N13	Pdl	Pd2	Pd3
C27-C21-C20	116.4(42)	114.5(40)	124.4(42)	118.7(28)	119.4(25)	121.1(28)
C25-C24-C27	100.5(39)	105.4(37)	100.5(43)	101.2(25)	102.3(29)	103.2(27)
N2-02-03	98.3(24)	101.7(25)	98.1(22)	99.3(15)	99.6(17)	100.7(15)
N3-03-02	100.1(25)	95.1(25)	101.9(22)	103.3(17)	99.6(17)	103.7(15)

Atom	Db	Atom	D
	Plane l: Ni	1-101-104-1N2-1N3	
	0.4553x + 0.6283y	+ 0.6308z - 6.3268	= 0
Nil	-0.0377	ln2	0.0261
101	-0.0102	ln3	-0.0064
104	0.0283		
	Plane 2: Ni -0.2591x + 0.4619y	2-201-204-2N2-2N3 + 0.8482z - 2.636	= 0
Ni2	-0.0059	2N2	0.0986
201	-0.1165	2N3	-0.0924
204	0.1163		
	Plane 3: Ni 0.7150x + 0.2574y	3-301-304-3N2-3N3 - 0.6500z - 2.9148	= 0
Ni3	-0.0102	3N2	0.0245
301	-0.0225	3N3	-0.0191
304	0.0274		

Table V. Equations of least squares planes^a

^aPlanes are defined as $C_1x + C_2y + C_3z + C_4 = 0$ where x, y, and z are cartesian coordinates. ^bD = distance (Å) of the given atom from the fitted plane. Table V. (continued)

Atom	D	Atom	D
	Plane 4: 0.5494x - 0.7432y	Nil-Ni2-Ni3-Ag2 + 0.3818z - 0.5180	0 = 0
Nil Ni2	0.0013 0.0016	Ni3 Ag2	0.0012 -0.0043
	Plane 5: A 0.5202x + 0.6249y	Ag2-104-1Nil-101 + 0.5821z - 6.7340) = 0
Ag2 104	0.0265 -0.0319	Nil lol	0.0382 -0.0328
	Plane 6: -0.2305x + 0.3763y	Ag2-204-Ni2-201 y + 0.8974z - 2.607	9 = 0
Ag2 204	0.0145 -0.0176	Ni2 201	0.0220 -0.0189
	Plane 7: 0.7617x + 0.2871y	Ag2-304-Ni3-301 - 0.5808z - 3.6753	5 = O
Ag2 304	0.0423 -0.0529	N13 301	0.0665 -0.0559
	Plane 8: Pd -0.24045x + 0.46758	al-101-104-1N2-1N3 By + 0.85061z - 10.	0 = 0
Pdl 101 104	-0.0040 0.0914 -0.0904	1N2 1N3	-0.0783 0.0814

Table V. (continued)

Atom	D	Atom	D
	Plane 9: Po 0.45919x + 0.62615	12-201-204-2N2-2N 5y + 0.63013z - 1	3 3.6 = 0
D 40	0,0000	0170	
Pa2	-0.0009	5N5	0.0061
201	-0.0065	2N3	-0.0056
204	0.0070		
	Plane 10: Po	13-301-304-3N2-3N3	3
0	0.70502x + 0.21164y	- 0.67686z - 2.93	3391 = 0
Pd3	-0.0165	3N2	-0.0117
301	0.0227	3N3	0.0199
304	-0.0144		
-			
	Plane 11:	Pdl-Pd2-Pd3-Ag2	
-	0.53741x + 0.74438y	r - 0.39633z - 8.0	02520 = 0
Pdl	0.0021	Pd3	0,0015
Pd2	0.0017	Ag2	-0.0054
		0-	
	Plane 12:	Ag2-104-Pd1-101	
-	0.24227x + 0.39028y	r + 0.88824z - 8.8	38979 = 0
Ag2	-0.0311	Pdl	-0.0420
104	0.0364	101	0.0366
	-		
	Plane 13:	Ag2-204-Pd2-201	
	0.48246x + 0.63531	y + 0.60299z - 13	5.6 = 0
Ag2	-0.0233	Pd2	-0.0310
204	1.6807	201	1.4880
	· - •		

Table V. (continued)

 Aton	n	D	Atom	D
	0.75923x	Plane 14: + 0.27875y	Ag2-304-Pd3-301 - 0.58809z - 4.12457	= 0
Ag 2 304		-0.0787 0.0976	Pd3 301	-0.1118 -0.0930

Since intramolecular H-bonding is of interest in almost all metal dioxime complexes, it is worthwhile to mention the O_2-O_3 distances (2.38(5), 2.40(5) and 2.27(4) Å) for the three nickel anion complexes. They are considered to be short as compared to the 2.40 Å reported for the dimethylglyoximato complex Ni(HDMG)₂¹⁵ and other related oxime metal complexes.¹⁶ Since the O_2-O_3 bond distances are not equal in the three Ni(δ -HCQD)₂⁻ ligands, they appear to be affected by crystal packing forces, which may also be the reason for the different Ag-O and Ag-N bond lengths in the three Ni(δ -HCQD)₂⁻ units.

<u>Configuration of the metal cluster</u> The geometry of the metal atoms in the molecule can be best described as a trigonal bipyramid as shown in Figure 4. The deviation of Ag2 from the least squares plane (Table V) defined by Nil-Ni2-Ni3-Ag2 is only 0.004 Å. The Agl-Ag2-Ag3 chain is almost linear $178.1(2)^{\circ}$. The angle between the Agl-Ag2-Ag3 line and the Nil-Ni2-Ni3 least squares plane is 89.7° indicating that the chain of silver atoms is nearly perpendicular to the plane.

It is worthwhile to note that Agl and Ag3 are about equidistant (\sim 4.7 Å) from the three nickel atoms. However they are too far for direct interaction. The center Ag2 is closer to the nickel atoms, about 3.6 Å away but are

Figure 4. The trigonal bipyramid configuration of

the Ni-Ag cluster.

still too far for M-M interactions to occur. The distances between the nickel atoms are listed in Table VI with Nil and Ni3 closer to each other. Most interesting are the short Agl-Ag2 (3.059(5) Å) and Ag2-Ag3 (3.052(5) Å) distances. By comparison the Ag-Ag distance in metallic silver is 2.89 Å.¹⁷ Since a Ni-Ni distance of 3.25 Å is sufficient to indicate M-M interaction in the stacked Ni(HDMG)₂¹⁵ complex, it seems likely that there are strong interactions between the Ag atoms in the Ni-Ag cluster. The tendency of Ag(I) ions to form linear bonds may also contribute to the linear arrangement of the atoms.

<u>Coordination around Ag</u> The Ag2 atom in the center of the chain is also coordinated to six 0 atoms of three Ni(δ -HCQD)₂⁻ units which act as bidentate ligands coordinating to Ag2 <u>via</u> their 01 and 04 oxime oxygen atoms, forming three 4-membered chelate rings around Ag2 (Figure 3). The average Ag-0 bond length is 2.49(3) Å, well within the range of Ag-0 bonds (2.15-2.88 Å) reported in the literature.¹⁸⁻²¹ The three Ni(δ -HCQD)₂⁻ are not arranged symmetrically around Ag2 at 120° angles with respect to each other, but rather the dihedral angles formed between the three least squares planes Ag2-104-Ni1-101, Ag2-204-Ni2-201 and Ag2-304-Ni3-301 are 130.2, 126.7 and 104.3°, respectively.

Ni-Ag		Pd-Ag	
Nil-Ni2	6.609(9)	Pd1-Pd2	6.682(3)
Nil-Ni3	5.697(9)	Pd2-Pd3	6.561(3)
Ni2-Ni3	6.535(10)	Pdl-Pd3	5.600(4)
Agl-Ag2	3.059(5)	Agl-Ag2	3.173(3)
Ag2-Ag3	3.052(7)	Ag2-Ag3	3.179(3)
Agl-Nil	4.795(7)	Agl-Pdl	4.882(3)
Agl-Ni2	4.717(8)	Agl-Pd2	4.802(3)
Agl-Ni3	4.787(6)	Agl-Pd3	4.858(3)
Ag2-Nil	3.616(7)	Ag2-Pdl	3.638(3)
Ag2-Ni2	3.668(8)	Ag2-Pd2	3.666(3)
Ag2-Ni3	3.651(8)	Ag2-Pd3	3.656(3)
Ag3-Nil	4.728(9)	Ag3-Pdl	4.816(3)
Ag3-Ni2	4.755(7)	Ag3-Pd2	4.842(3)
Ag3-Ni3	4.772(11)	Ag3-Pd3	4.859(3)

Table VI. Distances between heavy atoms (Å) and their

101

estimated standard deviations (in parentheses)

In contrast to Ag2, only N atoms (N₁ or N₄) from the Ni(δ -HCQD)₂⁻ ligands are coordinated to Ag1 and Ag3 to give a trigonal pyramidal configuration in each case (Figure 3). The average Ag-N bond length is 2.20(4) Å comparable to other Ag-N bonds (2.11-2.51 Å) reported in the literature.¹⁹⁻²³ The oxime oxygen atoms O₁ and O₄ are too far (> 2.8 Å) from Ag1 or Ag3 to form Ag-O bonds. The distance of Ag1 and Ag3 from the least squares planes defined by 1N4-2N4-3N4 and 1N1-2N1-3N1, respectively, are 0.523 Å in both cases.

Within the unit cell (Figure 2) of Ni-Ag, no intermolecular H-bonding is observed. However, molecules tend to pair up through Van der Waals interactions between molecules along the 2-fold screw parallel to the C axis. There are also two sites for CHCl₃ near each hexanuclear molecule. The molecule CHCl₃ distances (> 3.4 Å) indicate interactions of only the Van der Waals type. A stereoscopic view of the Ni-Ag molecule is shown in Figure 5.

Description of the structure $[Pd(\delta - HCQD)_2Ag]_3 \cdot 1.1CHCl_3$, <u>Pd-Ag</u> A single crystal of the Pd-Ag complex prepared by adding aqueous AgNO₂ to a MeOH/CHCl₃ solution of Pd(δ -HCQD)₂ was chosen for the X-ray structural study. The results of that study showed that Pd-Ag has the same structure as

Figure 5. The stereoscopic view of the molecule of $[Ni(\delta-HCQD)_2Ag]_3$.

Ni-Ag with $Pd(\delta-HCQD)_2^{-}$ units acting as multidentate ligands. The average Pd-N bond length is 1.99(2) Å which corresponds well with literature values (1.96-2.03 Å) for Pd oxime complexes.^{15,24,25} The average Pd-O bond distance of 2.00(2) Å is also comparable to those (2.00-2.03 Å) observed in other palladium oxime compounds.²⁵ While the average Ag-O (2.45(2) Å) and Ag-N (2.27(3) Å) bond distances are comparable to those of the Ni-Ag structure the distances between Agl-Ag2 (3.173(3) Å) and Ag2-Ag3 (3.179(3) Å) are significantly longer. This arises from the larger size of the Pd(II) ions which move the δ -HCQD⁻ ligands further away from each other in $Pd(\delta-HCQD)_2$ as compared to $Ni(\delta-HCQD)_2$, resulting in longer Ag-Ag distances. Since the Agl-Ag2-Ag3 angle is almost linear, 178.6(4)° (Table VII) the short Ag-Ag distances (~3.17 Å) in the present case would also suggest M-M interaction. The angle between the Ag chain and the least squares plane defined by Pdl-Pd2-Pd3-Ag2 is 89.5°, very close to the value in the Ni-Ag structure.

The average intramolecular H-bonding distance (2.41(3) Å)is shorter than the 2.59 Å reported for Pd(HDMG)₂,^{15b} but it is longer than that (2.35(3) Å) in the Ni-Ag structure. However, this is not unexpected because the H-bonding distance in M(HDMG)₂ complexes^{26,27} is directly proportional to the size of the metal ion. Other bond distances and angles are summarized in Tables III and IV.

 $[Ni(\delta-HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3, Ni-Ag, and$ $[Pd(\delta-HCQD)_2Ag]_3 \cdot 1.1CHCl_3, Pd-Ag$ Both the Ni-Ag and the Pd-Ag complexes can be prepared by adding aqueous AgNO₃ to a CHCl₃/MeOH solution of the corresponding M(δ -HCQD)₂ complex according to the following equation:

$$3M(\delta - HCQD)_{2} + 3Ag^{+} \xrightarrow{H_{2}O}_{MeOH/CHCl_{3}} [M(\delta - HCQD)_{2}Ag]_{3} + 3H^{+}$$
(1)
where $M = Ni^{2+}$ or Pd^{2+}

This Ni-Ag complex is very stable so that the addition of HgCl₂ to a solution of the complex will not precipitate AgCl immediately.

Table VII. Related angles (deg) and their estimated standard deviations (in parentheses) for the M₃Ag₃ clusters

	Ni3Ag3	Pd ₃ Ag ₃
Agl-Ag2-Ag3	178.1(2)	178.65(4)
Mal-Agl-M2	88.0(1)	87.25(4)
Ml-Agl-M3	73.0(1)	70.18(4)
M2-Agl-M3	86.9(1)	85.55(5)
Ml-Ag2-M2	130.3(2)	132.38(9)
Ml-Ag2-M3	103.2(2)	100.29(6)
M2-Ag2-M3	126.5(2)	127.32(8)
Ml-Ag3-M2	88.4(1)	87.55(5)
Ml-Ag3-M3	73.7(1)	70.72(5)
M2-Ag3-M3	86.6(1)	85.12(4)

^aStands for Ni in column 1 but Pd in column 2.

The ¹³C NMR spectrum of the Ni-Ag complex in CDCl₃ solvent exhibits twelve peaks for the C atoms. Following assignments made in the ¹³C NMR spectrum of Ni(δ -HCQD)₂,³ the four peaks at 153.76, 153.49, 147.42 and 147.31 ppm downfield from TMS may be assigned to those of the oxime C atoms. The solid state structure suggests, however, that only two oxime ¹³C resonances should be observed. Since the Ag¹⁰⁷ and Ag¹⁰⁹ isotopes have a spin of -1/2, spin-spin coupling between C and Ag may occur. However, this possibility may be dismissed because only two peaks at 153.70 and 142.49 ppm are observed for the oxime C atoms in the similar Pd-Ag complex. It therefore appears that Ni-Ag either has a different structure or is a mixture of structures in solution.

The IR spectrum of the Ni-Ag complex in a KBr pellet no longer shows an absorption band at 1690 cm⁻¹ corresponding to the oxygen-coordinated oxime $\nu(C=N)$ vibration found in Ni(δ -HCQD)₂.^{2,3} Instead, a new band is observed at 1615 cm⁻¹ which is most likely the $\nu(C=N)$ frequency of the oxime group coordinated to both the Ag and Ni ions. The other $\nu(C=N)$ absorption which probably arises from the oxime which is N-coordinated to Ni remains unchanged at 1560 cm⁻¹, as previously reported for Ni(δ -HCQD)₂.² Since the IR spectrum of the Pd-Ag complex in a KBr pellet

is very similar to that of Ni-Ag, it appears that the 1605 and 1550 cm⁻¹ bands are characteristic of this type of hexanuclear cluster.

Products having infrared absorptions at these positions have also been obtained from reactions of Ni(δ -HCQD)₂ with Sm(III), La(III), Nd(III) and Hg(II) salts. Although these compounds have not been characterized further, their infrared spectra suggest that they may have cluster structures of the type observed for Ni-Ag and Pd-Ag.

 $[Ni(\alpha-HCQD)_2Ag]\cdot 1/2AgNO_3$ and $[Pd(\alpha-HCQD)_2Ag]\cdot 1/2AgNO_3$ Both complexes can be prepared by adding aqueous AgNO_3 to a MeOH/CHCl₃ solution of the corresponding M(α -HCQD)₂ complex. The difference between the starting material M(α -HCQD)₂ and M(δ -HCQD)₂, mentioned in an earlier section, is the isomeric form of the HCQD⁻ ligand. In Ni(α -HCQD)₂, the oxime N atom coordinated to the metal ion is closer to the bridgehead methyl group, as shown in Figure 6 (compare Figure 1). The reaction of M(α -HCQD)₂ with AgNO₃ proceeds in a manner very similar to that of M(δ -HCQD)₂ (eq. 1).

In contrast to the Ni-Ag and Pd-Ag complexes, both of the products $[Ni(\alpha-HCQD)_2Ag]\cdot1/2AgNO_3$ and $[Pd(\alpha-HCQD)_2Ag]\cdot1/2AgNO_3$ obtained from the reaction of $M(\alpha-HCQD)_2$ with AgNO₃ are not soluble in common organic solvents such as

Figure 6. Structure of $Ni(\alpha-HCQD)_2$.

alcohols, CHCl₃, CH₃CN and DMSO. This low solubility may be the result of the co-crystallization of a hexanuclear metal cluster similar to those of Ni-Ag or Pd-Ag with AgNO₃. The IR spectrum of $[Ni(\alpha-HCQD)_2Ag]\cdot1/2AgNO_3$ in a KBr pellet shows absorption bands at 1615 and 1550 cm⁻¹ while that of $[Pd(\alpha-HCQD)_2Ag]\cdot1/2AgNO_3$ exhibits absorptions at 1600 and 1550 cm⁻¹. These characteristic $\nu(C=N)$ vibrational frequencies seem to indicate that hexanuclear metal clusters are indeed present in these compounds as well. Compounds of the type $[Ni(\alpha-HCQD)_2Ag]_3$ without AgNO₃ have not been isolated.

 $[Ni(\delta-HCQD)_{2}(Py)_{2}]\cdot CHCl_{3}$ In a further attempt to understand the coordination chemistry of Ni(δ -HCQD)₂, pyridine was added to a H₂O/MeOH/CHCl₃ solution of Ni(δ -HCQD)₂, from which a green paramagnetic complex, [Ni(δ -HCQD)₂(Py)₂]·CHCl₃ was isolated. The molar conductivity of the complex in CH₃CN shows that it is non-ionic, which suggests that a dipyridine adduct of Ni(δ -HCQD)₂ is formed. Its infrared spectrum taken in a KBr pellet shows ν (C=N) absorptions at 1610 and 1550 cm⁻¹. These are indeed very similar to those (1615 and 1560 cm⁻¹) observed in the Ni-Ag complex. Although it is unlikely that a hexanuclear metal cluster is formed, it does suggest that the trans-N₂O₂ coordination around Ni(II) may have changed to cis-N₂O₂.

In an effort to determine if $[Ni(\delta-HCQD)_2(Py)_2]\cdot CHCl_3$ is simply a 2:1 adduct of pyridine with trans N_2O_2 $Ni(\delta-HCQD)_2$, the UV-visible spectrum of $Ni(\delta-HCQD)_2$ in $CHCl_3$ was studied in the presence and absence of pyridine. In fact, there is no reaction of $Ni(\delta-HCQD)_2$ with pyridine since its absorption at 576 nm remains unchanged over a period of several days. Also there is no evidence of the δl^4 nm absorption characteristic of $Ni(\delta-HCQD)_2(Py)_2$. Moreover, the pyridine solution remains diamagnetic, which suggests that the $Ni(\delta-HCQD)_2$ retains its square planar geometry even in the presence of excess pyridine. These observations strongly indicate that $Ni(\delta-HCQD)_2(Py)_2$ is not a simple trans adduct of $Ni(\delta-HCQD)_2$, Figure 1. A possible structure for this complex is the one shown in Figure 7 in which the $(HCQD)_2$ coordination around

Figure 7. Structure of $[Ni(\delta - HCQD)_2(Py)_2] \cdot CHCl_3$.

the Ni is now cis-N₂O₂ as suggested by the IR results. Further evidence in support of this structure is the fact that addition of AgNO₃ to a H₂O/MeOH/CHCl₃ solution of $[Ni(\delta-HCQD)_2(Py)_2]$ ·CHCl₃ readily yields the Ni-Ag cluster.

The solvent $(H_2O/MeOH/CHCl_3)$ plays an important role in the preparation of Ni(δ -HCQD)₂(Py)₂. Perhaps its high polarity promotes the isomerization of trans-N₂O₂ Ni(δ -HCQD)₂ to the cis-N₂O₂ isomer which then reacts with pyridine.

Since our attempts to prepare similar Ni-Ag cluster complexes with Ni(HDMG)₂ and Pd(β -HCQD)₂ (in the ternary solvent system) failed, it becomes evident that N,O-chelation of the ligand to the metal is probably a necessary condition for the formation of these hexanuclear cluster complexes.

REFERENCES AND NOTES

- Ma, M. S.; Angelici, R. J.; Powell, D.; Jacobson, R. A. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1978</u>, 100, 7068.
- 2. Ma, M. S.; Angelici, R. J. submitted for publication to Inorg. Chem.
- 3. Nakamura, A.; Konishi, A.; Otsuka, S. J. Chem. Soc. Dalton Trans. 1979, 488.
- 4. Doyle, J. R.; Slade, P. E.; Jonassen, H. B. <u>Inorg</u>. Syn. <u>1960</u>, 6, 218.
- 5. Jacobson, R. A. J. Appl. Cryst. 1976, 9, 115.
- 6. Rohrbaugh, W. J.; Jacobson, R. J. <u>Inorg</u>. <u>Chem</u>. <u>1974</u>, 13, 2535.
- 7. Lawton, S. L.; Jacobson, R. A. <u>Inorg. Chem. 1968</u>, 7, 2124.
- 8. Hubbard, C. A.; Quicksall, C. W.; Jacobson, R. A. "The Fast Fourier Algorithm and the Programs ALFF, ALFFDP, ALFFPROJ, ALFFT and FRIEDEL", U. S. Atomic Energy Commission Report IS-2625. Iowa State University and Institute for Atomic Research, Ames, Iowa, 1971.
- 9. Lapp, R. L.; Jacobson, R. A. "ALL, A Generalized Crystallographic Least Squares Program", U. S. DOE Report, 1979, in preparation.
- 10. Hanson, H. P.; Herman, F.; Lea, J. D.; Skillman, S. Acta Cryst. 1960, 17, 1040.
- 11. Templeton, D. H. "International Tables for X-ray Crystallography", The Kynock Press: Birmingham, England, 1962; Vol. III, Table 3.3.2C, p. 215-216.
- 12. Thomas, L. H.; Umeda, K. J. Chem. Phys. 1957, 26, 293.
- Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.

- 14. Ma, M. S.; Angelici, R. J.; Jacobson, R. A. Unpublished work, Iowa State University.
- 15. a) Grodycki, L. E.; Rundle, R. E. <u>Acta</u> <u>Cryst</u>. <u>1953</u>, 6, 487.
 - b) Williams, D. E.; Wohlauer, G.; Rundle, R. E. J. <u>Am. Chem. Soc. 1959</u>, 81, 755.
- 16. Schlemper, E. O. Inorg. Chem. 1968, 7, 1130.
- 17. Pearson, W. B. A Handbook of Lattice Spacings, Structures of Metals and Alloys, <u>1967</u>, 2, Oxford Pergamon Press: Oxford, 1967; Vol. 2.
- 18. Hunt, G. W.; Lee, T. C.; Amma, E. L. <u>Inorg. Nucl.</u> <u>Chem. Letters</u> <u>1974</u>, 10, 909.
- 19. Delourne, P. J. P.; Loiseleur, R. F. H. <u>Acta Cryst.</u> <u>1977</u>, B33, 2709.
- 20. Kuyper, J.; Vrieze, K.; Olie, K. <u>Crystal. Str.</u> <u>Commun. 1976</u>, 5, 179.
- 21. Palgaard, G. A. P.; Hazell, A. C.; Hazell, R. G. Acta Cryst. <u>1974</u>, B30, 2721.
- 22. Britton, D.; Chow, Y. M. Acta Cryst. 1977, B33, 697.
- 23. Bigoli, F.; Leporati, E.; Pellinghelli, M. A. Crystal. Str. Commun. 1975, 4, 127.
- 24. Constable, A. G.; McDonald, W. S.; Sawkins, L. C.; Shaw, B. L. J. Chem. Soc. Chem. Commun. 1978, 1061.
- 25. Hussain, M. S.; Schlemper, E. O. <u>Inorg. Chem</u>. <u>1979</u>, 18, 1116.
- 26. Dyressen, D. Svensk Kenrisk Tidskrift 1963, 618.
- 27. Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.

SECTION IV. CAMPHORQUINONE OXIME AND IMINE COMPLEXES OF NICKEL(II) AND ZINC(II)

INTRODUCTION

Our recent studies of optically active chelating ligands, particularly those formed from camphorquinonedioxime,^{1,2} have led us to investigate Ni(II) complexes of isonitrosocamphor (HCQM) and isonitrosoepicamphor (HCQE). Both HCQM and HCQE are oxime derivatives of camphorquinone (CQ) as shown in Figure 1. Each of them

HCQM

Figure 1. Camphorquinone and its mono-oxime derivatives.

is capable of existing in two isomeric forms³ with the OH group either syn or anti to the carbonyl oxygen. Unlike the reactions of isomers of camphorquinonedioxime,^{1,2,4} the products of reactions with HCQM and HCQE did not depend upon the isomeric form of the reacting ligand. Several Ni(II) complexes of these ligands were isolated. In addition, Zn(II) and Ni(II) imine complexes of CQ were obtained by condensing one of the two amino groups of 1,3-diaminopropane (H₂NdpNH₂) with CQ in the presence of the metal ions. These studies give further insight into the coordination chemistry of this bicyclic type of ligand and also show that carbonyl-oxime ligands which are usually poor coordinating agents⁵ for Ni(II) do indeed form stable complexes in the case of HCQM and HCQE.

EXPERIMENTAL SECTION

<u>Spectral data</u> Proton NMR spectra were obtained on Perkin-Elmer R-20B and A-60 spectrometers using TMS as an internal reference and d-CHCl₃ or d₃-CH₃CN as solvents. Infrared spectra ($4000-200 \text{ cm}^{-1}$) were obtained on KBr pellets using a Beckman IR-4250 spectrophotometer. Electronic spectra were recorded on a Cary 14 instrument using CH₃CN as the solvent.

<u>Conductivity measurements</u> Molar conductivities of all metal complexes were obtained in CH_3CN employing an Industrial Instruments conductivity bridge model RC16-B2. The solution concentrations were approximately 2 X 10⁻³ M based on the formula weights of the analyzed complexes.

<u>Magnetic moments</u> The values of μ_{eff} (B.M.) for individual complexes were obtained in CH₃CN using the NMR shift method.⁶⁻⁸ They are corrected for the diamagnetic contributions of the ligand atoms.⁹

<u>Starting materials</u> Optically active camphorquinone was prepared from (+)-camphor using the procedure of Evans, et al.¹⁰ Also optically active isonitrosocamphor¹¹ (HCQM) and isonitrosoepicamphor¹² (HCQE) were prepared according to the methods of Forster.

<u>Preparation of [Ni(CQM)(Py)₃(H₂O)]PF₆·H₂O</u> This compound was prepared by reacting 0.6 mmol of a mixture of syn and anti isomers of HCQM with 0.3 mmol of NiCl₂·6H₂O in 20 ml of MeOH at room temperature for 10 min. Then 0.25 g of NH₄PF₆ was added to the light green solution, which was then filtered. Approximately 1 ml of pyridine (Py) was added to the filtrate. Within 2 hrs. at room temperature, brown crystals (90% yield) of [Ni(CQM)-(Py)₃(H₂O)]PF₆·H₂O were obtained. Anal. calcd. for Ni(C₂₅H₂₉N₄O₂)PF₆·2H₂O: C, 47.86; H, 5.31; N, 8.93; Ni, 9.36. Found: C, 48.09; H, 4.96; N, 8.82; Ni, 9.41. The analogous B(C₆H₅)₄ instead of NH₄PF₆.

Preparation of $[Ni(CQE)(Py)_3(H_2O)]PF_6 \cdot 1/2H_2O$ Isonitrosoepicamphor (0.3 mmol), as a mixture of syn and anti isomers, was reacted with NiCl₂ · 6H₂O (0.3 mmol) according to the procedure for the preparation of $[Ni(CQM)(Py)_3(H_2O)]PF_6 \cdot H_2O$ mentioned above. Yield 70%. Anal. calcd. for Ni(C₂₅H₂₉N₄O₂)PF_6 · 1 1/2H₂O: C, 48.56; H, 5.22; N, 9.06. Found: C, 48.24; H, 4.85; N, 8.98.

<u>Preparation of Ni(CQdpNH₂)₂[B(C₆H₅)₄]₂</u> This greenishblue crystalline complex was prepared by refluxing a mixture of 3 mmol of CQ, 1.5 mmol of 1,3-diaminopropane (H₂NdpNH₂), and 1.5 mmol of Ni(NO₃)₂.6H₂O in 20 ml of abs. EtOH for 6 hrs. The resulting green solution was filtered, and approximately 0.5 g of NaB(C_6H_5)₄ in 10 ml of MeOH was mixed into the filtrate. After 15 min. the product began to crystallize out of the solution. It was collected and recrystallized again in CH₃CN/MeOH to give greenishblue crystals of the product (60% yield). Anal. calcd. for NiB₂C₇₄H₈₄N₄O₂: C, 77.83; H, 7.42; N, 4.91. Found: C, 78.06; H, 7.59; N, 4.94.

<u>Preparation of $Zn(CQdpNH_2)_2[B(C_6H_5)_4]_2 \cdot CH_3CN</u>$ This complex was prepared in the same manner as Ni(CQdpNH₂)₂- $[B(C_6H_5)_4]_2$ substituting $Zn(NO_3)_2 \cdot 6H_2O$ for Ni(NO₃)₂ $\cdot 6H_2O$. After the yellow product precipitated, it was collected and recrystallized in CH₃CN/MeOH to give yellow crystals (75% yield). Anal. calcd. for $ZnB_2C_74H_84N_4O_2 \cdot CH_3CN$: C, 76.72; H, 7.38; N, 5.89. Found: C, 76.31; H, 7.59; N, 5.70.</u>

<u>Preparation of Ni[(HCQEdpCQE)(CH₃CN)₂]B(C₆H₅)₄</u> This complex was prepared by gradually bringing a 10 ml diisopropyl ether solution of 3 mmol of HCQE and 1.5 mmol of H₂NdpNH₂ to reflux and then allowing it to cool to room temperature. After filtration, the solvent was removed by vacuum evaporation. The yellow oily residue was dissolved in 10 ml of MeOH. Another 10 ml MeOH solution containing 1.5 mmol of NiCl₂·6H₂O and 0.5 g of NaB(C_6H_5)₄ was mixed into it. A dark brown solution resulted immediately, followed by precipitation of the product which was recrystallized in CH₃CN as brick red crystals. Yield 50%. Anal. calcd. for NiBC₄₇H₅₅N₄O₂. 2CH₃CN: C, 71.24; H, 7.17; N, 9.78. Found: C, 71.16; H, 6.91; N, 9.78.

<u>Preparation of $(HCQM)_{2}(H_{2}NdpNH_{2})$ </u> This solid was prepared by the procedure of Uhlig and Friedrich.¹³ To 20 ml of diisopropyl ether containing 6 mmol of HCQM was added 3 mmol of $H_{2}NdpNH_{2}$. The solution was gently brought to boiling and then allowed to cool to room temperature gradually. Yellow crystals of $(HCQM)_{2}(H_{2}NdpNH_{2})$ crystallized out after 30 min. Yield 95%. Anal. calcd. for $C_{23}H_{40}N_{4}O_{4}$: C, 63.26; H, 9.25; N, 12.83. Found: C, 63.20; H, 8.97; N, 12.45.

Preparation of $[Ni_2(CQM)_2(OH)(H_2NdpNH_2)]B(C_6H_5)_4 \cdot MeOH \cdot H_2O$ This nickel complex was prepared by adding a 15 ml MeOH solution containing 0.3 mmol of $(HCQM)_2(H_2NdpNH_2)$ to a MeOH solution (approximately 10 ml) of 0.3 mmol of NiCl₂ · 6H₂O. The dark brown solution was then filtered into a flask containing 0.5 g of NaB(C₆H₅)₄. After 30 min. the green solid which precipitated was collected and recrystallized in CH₃CN/MeOH to give the product. Yield 60%. Anal. calcd. for Ni₂C₄₈H₆₅BN₄O₇: C, 61.43; H, 6.99; N, 5.97; Ni, 12.51. Found: C, 62.01; H, 7.28; N, 6.19; Ni, 12.18.

RESULTS AND DISCUSSION

 $[Ni(CQM)(Py)_3(H_20)]$ PF₆·H₂O This complex was prepared by reacting $Ni(NO_3)_2 \cdot 6H_2O$ with HCQM in the presence of excess pyridine (eq. 1). No identifiable compounds could $Ni^{2+} + H_{2}O + HCQM + 4Py \xrightarrow{MeOH} [Ni(CQM)(Py)_{3}(H_{2}O)]^{+} + PyH^{+}$ (1)be isolated in the absence of pyridine. When precipitated as the PF_6 salt, the dark brown paramagnetic crystalline product was obtained. The molar conductivity (Table I) of the complex in CH_3CN^{14} is consistent with its formulation as a 1:1 electrolyte, and suggests that the oxime group is probably deprotonated. It does not, however, distinguish between monomeric and dimeric structural types. By comparing the IR spectrum (Table II) of the complex with that of HCQM³, which has its v(C=N) and v(C=0) frequencies at 1653 and 1751 cm⁻¹, respectively, a new band of strong intensity at 1540 cm⁻¹ can be assigned to the v(C=N) mode of the coordinated oxime. Another band of equally strong intensity is found at 1670 cm⁻¹. Based on IR studies of organic carbonyls coordinated to Ni(II) by Ablov et al., 15,16 this latter band may be attributed to the v(C=0) mode of the coordinated CQM ligand.

The anion PF_6 gives a characteristic broad, intense absorption between 820 and 860 cm⁻¹. The coordination of

Compound	Color	Molar Conductance ^a	µ (B.M.)
[N1(CQM)(Py) ₃ (H ₂ O)]PF ₆ ·H ₂ O	brown	122	3.04 ^b
[Ni(CQE)(Py) ₃ (H ₂ O)]PF ₆ · 1/2H ₂ O	brown	129	3.14 ^b
$Ni(CQdpNH_2)_{2}[B(C_{G}H_{5})_{4}]_{2}^{C}$	green	155	3.50 ^b
$Zn(CQdpNH_2)_2[B(C_6H_5)_4]_2^C$	yellow	174	diamagnetic
$[Ni(HCQEdpCQE)(CH_3CN)_2]B(C_6H_5)_4^C$	brown	113	3.27 ^d
$[Ni_{2}(CQM)_{2}(OH)(H_{2}NdpNH_{2})]B(C_{6}H_{5})_{4} \cdot MeOH \cdot H_{2}O^{C}$	green	83	2.28 ^{d,e}

Table I. Physical properties of the complexes

^aAt 25° C in cm²ohm⁻¹M⁻¹. ^bAt 35° C. ^cThe presence of B(C₆H₅)₄⁻ usually lowers molar conductance values in CH₃CN.¹⁴ ^dAt 25° C. ^eValue per Ni.

Compound	ν(N-H)	v(C=0)	∨(C=N)	∨(M-Py)
$[Ni(CQM)(Py)_{3}(H_{2}O)]PF_{6} \cdot H_{2}O$	**************************************	1670	1540	235
[N1(CQE)(Py) ₃ (H ₂ O)]PF ₆ · 1/2H ₂ O		1675	1520	230
$Ni(CQdpNH_2)_2[B(C_6H_5)_4]_2$	3300, 3260	1720	1675	
$Zn(CQdpNH_2)_2[B(C_6H_5)_4]_2$	3290, 3250	1740	1680	
$[Ni(HCQEdpCQE)(CH_3CN)_2] \cdot B(C_6H_5)_4$	3340, 3280 ^b		1650, 1615	
$[Ni_2(CQM)_2(OH)(H_2NdpNH_2)]B(C_6H_5)_4 \cdot MeOH \cdot H_2O$	3350, 3290	1 670	1540	

Table II. IR^{a} absorption spectra (cm⁻¹) of the complexes

^aTaken on KBr pellets.

^bProbably either v(O-H) or v(N-H) modes.

pyridine to Ni(II) is evidenced by the vibrational frequencies of pyridine at 626, 426 cm⁻¹ and also the ν (M-Py) absorption at 236 cm⁻¹ in agreement with those reported by Nakamoto.¹⁷ The IR spectral and the molar conductivity results are consistent with either a dimeric or monomeric formulation for the complex.

A possible dimeric structure for $[Ni(CQM)(Py)_3(H_2O)]$ -PF₆·H₂O is shown in Figure 2, in which CQM⁻ bridges two

Figure 2. The dimeric structure of $[Ni(CQM)(Py)_3(H_2O)]PF_6 \cdot H_2O$.

Ni atoms through its oxime N and carbonyl O atoms. The pyridine molecules occupy positions above and below the CQM⁻ plane of coordination and away from the bridgehead methyl of the CQM⁻ ligand. The small water molecules occupy the remaining sites to complete the octahedral coordination of Ni(II). Charalambous, et al.,¹⁸ proposed a similar type of oxime-carbonyl bridge between Ni atoms in Ni complexes of the mono-oximes of ortho-benzoquinones. In the case that the complex is monomeric, both the carbonyl 0 and oxime N atoms of the CQM⁻ ligand would probably coordinate to the same Ni atom. The magnetic moment of the complex is 3.0^4 B.M., and its electronic spectrum exhibits a broad asymmetric absorption with a maximum at 980 nm($\epsilon = 9.8$ cm⁻¹M⁻¹); both of these results are consistent¹⁹ with octahedral Ni(II) in either a monomeric or dimeric structure.

 $[Ni(CQE)(Py)_3(H_2O)] \cdot PF_6 \cdot 1/2H_2O$ As expected, this complex can be prepared in a manner similar (eq. 1) to that of the nickel complex of CQM⁻, and probably has the same type of structure because its electronic absorption spectrum (Table III) and magnetic moment (3.14 B.M.) are comparable to those of $[Ni(CQM)(Py)_3(H_2O)]PF_6 \cdot H_2O$. Coordination of the CQE⁻ ligand to Ni(II) is indicated by the positions of the $\nu(C=O)$ and $\nu(C=N)$ absorptions at 1675 and 1520 cm⁻¹, respectively, in its infrared spectrum.

Although carbonyl-oxime compounds are known⁵ to be poor coordinating ligands for Ni(II), the mono-oxime of ortho-benzoquinone forms Ni(II) complexes, which are perhaps stabilized by delocalization through the highly conjugated ligand system. In the present studies of

Table III. Visible and near IR absorption bands in CH₃CN solvent

Compound	Maximum	Absorption	n (nm) ^a
$[Ni(CQM)(Py)_{3} \cdot H_{2}O]PF_{6} \cdot H_{2}O$	825(sh) ^b	980(9.3)	1125(sh)
[Ni(CQE)(Py) ₃ ·H ₂ O]PF ₆ ·1/2H ₂ O	800(sh)	975(8.9)	1050(sh)
$Ni(CQdpNH_2)_2[B(C_6H_5)_4]_2$	587(26)	975(9.8)	
$[Ni(HCQEdpCQE)(CH_3CN)_2]B(C_6H_5)_4$	775(sh)	810(sh)	840(3.6)
$[Ni_2(CQM)_2(OH)(H_2NdpNH_2)]B(C_6H_5)_4 \cdot MeOH \cdot H_2O$	585(45.5) ^c	1020(10) ^c	

^aExtinction coefficients $(cm^{-1}M^{-1})$ are given in parentheses.

^bSh means shoulder.

^CExtinction coefficient per Ni.

isonitrosocamphor and isonitrosoepicamphor where there is no such conjugation, stable Ni(II) complexes can still be obtained provided pyridine is used to complete the octahedral coordination sphere.

 $[Ni(CQdpNH_2)_2][B(C_6H_5)_4]_2$ In an attempt to prepare the complex bis-(camphorquinone-diimine-1,3-propane)Ni(II) tetraphenylborate (Figure 3), a green compound was isolated

Figure 3. Bis-(camphorquinone-diimine-1,3-propane)Ni(II) ion.

when a mixture of Ni(NO₃)₂· $6H_2O$, CQ and H_2NdpNH_2 in abs. EtOH was refluxed for several hours, followed by subsequent exchange of NO₃⁻ for B(C₆H₅)₄⁻. Elemental analysis of the product indicated that the reaction proceeded according to the following equation:

$$\operatorname{Ni}^{2^{+}} + 2 \operatorname{CQ} + 2 \operatorname{H}_{2}\operatorname{NdpNH}_{2} \xrightarrow{\operatorname{MeOH}} [\operatorname{Ni}(\operatorname{CQdpNH}_{2})_{2}]^{2^{+}} + 2\operatorname{H}_{2}O \qquad (2)$$

A conductivity measurement showed that the product is a 2:1 electrolyte in CH_3CN . The $CQdpNH_2$ ligand is the Schiff base resulting from the condensation of the C3 carbonyl group with one amino group of H_2NdpNH_2 . Its presence in the complex is supported by the KBr infrared spectrum of the complex which shows two $\nu(N-H)$ absorptions at 3300 and 3250 cm⁻¹. The sharp, intense band at 1675 cm⁻¹ may be assigned to the $\nu(C=N)$ mode of the Schiff base. The carbonyl $\nu(C=0)$ absorption occurs at 1720 cm⁻¹, which is shifted somewhat to lower frequency from values of 1780 and 1765 cm⁻¹ for free CQ in CHCl₃ solution. The small shift of the $\nu(C=0)$ frequency suggests that the carbonyl group is either weakly coordinated to the metal ion or hydrogen bonded to a coordinated amino group.

Formation of the Schiff base probably occurs at the C_3 rather than the C_2 carbonyl group. This is suggested by the work of Forster⁹ in which he noted that CQ reacted with aniline to form a Schiff base only at the C_3 position, probably because this is the sterically least hindered site.

The electronic absorption spectrum (Table III) of the complex exhibits broad bands at 587 nm($\epsilon = 26 \text{ cm}^{-1}\text{M}^{-1}$) and 975 nm($\epsilon = 9.8 \text{ cm}^{-1}\text{M}^{-1}$). Although the low ϵ values (less than 100)¹⁹ suggest an octahedral geometry for the complex, the magnetic moment (3.5 B.M.) is more consistent with a tetrahedral geometry (Figure 4). It is possible

Figure 4. The Ni(CQdpNH₂)₂²⁺ ion.

that weak coordination of the carbonyl groups gives rise to these somewhat contradictory results.

 $Zn(CQdpNH_2)_2[B(C_6H_5)_4]_2 \cdot CH_3CN$ This bright yellow Zn complex was prepared in the same way as the analogous Ni(II) complex described above. Its infrared spectrum (Table II) is very similar to that of the corresponding Ni(II) complex and suggests that these complexes have similar coordination around the metal ions. The tendency of Zn(II) to form tetrahedral complexes suggests such a structure (Figure 4) for this complex. The KBr spectrum also exhibits $v(C \equiv N)$ absorptions at 2250 and 2290 cm⁻¹ for the uncoordinated CH₃CN.

The proton NMR spectrum of the complex in d_3 -CH₃CN gives 3 methyl-proton signals as sharp singlets at δ values of 0.71, 0.91, and 1.04 ppm. The phenyl proton

signals of the $B(C_8H_5)_4$ anion appear between 6.7 and 7.4 ppm. The protons of the propyl chain are observed as multiplets at 3.8 and 3.0 ppm, while the broad signal of the amino protons coincides with the multiplets at 3.8 ppm. The sharp singlet at 1.9 ppm corresponds to free CH₃CN. Most important of all is the C₄ proton which occurs at 2.5 ppm in CQ but shifts to 3.15 ppm in the Zn complex. Such a shift is expected when this proton is adjacent to an N-atom coordinated to a metal ion, as observed in our previous ¹H NMR studies of camphorquinonedioxime metal complexes.^{2,4} This result confirms our earlier assumption for the Ni complex that Schiff base formation occurs at the least hindered C₃ carbonyl.

 $[\underline{\text{Ni}(\text{HCQEdpCQE})(\text{CH}_3\text{CN})_2]B(C_6\text{H}_5)_4}$ This brown nickel(II) complex may be prepared by the reaction of Ni(II), H₂NdpNH₂, and isonitrosoepicamphor. Based on elemental analytical Ni²⁺ + 2 HCQE + H₂NdpNH₂ + 2 CH₃CN ---->

$$Ni(HCQEdpCQE)(CH_3CN)_2^+ + H^+ + 2 H_2O$$
(3)

results, octahedral structures such as those shown in Figures 5, 6, and 7 may be suggested for the complex. The infrared spectrum of the complex shows absorptions at 2250, 2280 and 2310 cm⁻¹ in the region characteristic

Figure 5. The $[Ni(HCQEdpCQE)(CH_3CN)_2]^+$ ion with two 5-membered chelate rings.

Figure 6. The $[Ni(HCQEdpCQE)(CH_3CN)_2]^+$ ion with one 5-membered and one 6-membered chelate ring.

×

Figure 7. The $[Ni(HCQEdpCQE)(CH_3CN)_2]^+$ ion with two 6-membered chelate rings.

of coordinated CH_3CN ligands.²⁰ The IR spectrum also shows bands at 1620 and 1650 cm⁻¹, which may be attributed to the $\nu(C=N)$ modes of the oxime and imine groups, although a specific assignment is not possible. The magnetic moment (3.27 B.M.) and electronic spectrum (Table III) are also consistent with octahedral coordination for the Ni(II).

Whether the complex has the structure shown in Figure 5, 6, or 7 cannot be established on the basis of the available data. However, it might be noted that the formation of 6-membered chelate rings such as those shown in Figures 6 and 7 is not unreasonable in view of the known¹ structure of $bis(\delta$ -camphorquinonedioximato)nickel(II) in which the ligands form 6-membered rings by coordinating via N and O atoms.

 $(\text{HCQM})_2(\text{H}_2\text{NdpNH}_2)$ Following the procedure used by Uhlig¹³ for the condensation of 1,3-diaminopropane with diacetylmonoxime to give bis-(diacetylmonoxime-imine)-1,3-propane, HCQM failed to react with H₂NdpNH₂ to give the desirable monoxime-imine ligand. Instead a product of the composition (HCQM)₂(H₂NdpNH₂), in which HCQM and H₂NdpNH₂ CO-crystallized, was obtained.

The IR spectrum of this pale yellow crystalline solid in CHCl₃ or in a KBr pellet shows both ν (C=O) and ν (C=N) absorptions at 1751 and 1653 cm⁻¹, respectively, which are identical to those of unreacted HCQM³. The ν (N-H) absorptions of the H₂NdpNH₂ are found at 3280 and 3350 cm⁻¹. The ¹H NMR spectrum taken in CDCl₃ shows proton signals which are merely a combination of those of the reactants since no changes in chemical shifts from those of HCQM³ and H₂NdpNH₂ are observed. It is uncertain what causes this unusual co-crystallization of the two organic compounds. However intermolecular H-bonding between the amino groups of H₂NdpNH₂ and the carbonyl or the oxime group of HCQM probably plays a role.

 $[\underline{\text{Ni}_{2}(\text{CQM})_{2}(\text{OH})(\underline{\text{H}_{2}\text{NdpNH}_{2}}]B(\underline{C_{6}H_{5}})_{4}\cdot\underline{\text{MeOH}\cdot\underline{\text{H}_{2}O}} \text{ This}}$ green solid was obtained by adding $(\underline{\text{HCQM}})_{2}(\underline{\text{H}_{2}\text{NdpNH}_{2}})$ to a MeOH solution containing $\underline{\text{NiCl}_{2}\cdot6\underline{\text{H}_{2}O}}$ and $\underline{\text{NaB}}(\underline{C_{6}H_{5}})_{4}$. Conductivity data (Table I) indicate that the compound is a 1:1 electrolyte which suggests that the oxime ligands are deprotonated. The magnetic moment after correction for the diamagnetic contributions of the ligands is 2.28 B.M., smaller than the normal value $(2.8-3.4 \text{ B.M.})^{19}$ for octahedral Ni(II) complexes. The electronic absorption spectrum (Table III) exhibits maxima at 585 nm($\epsilon =$ 45.5 cm⁻¹M⁻¹) and 1020 nm($\epsilon = 10 \text{ cm}^{-1}\text{M}^{-1}$).

Its IR spectrum taken on a KBr pellet is very similar to that of $[Ni(CQM)(Py)_3(H_2O)]PF_6 \cdot H_2O$ with intense absorptions at 1540 and 1670 cm⁻¹. These may be assigned to the v(C=N) and v(C=O) modes, respectively, of the coordinated CQM⁻ ligand. The v(N-H) absorptions are observed as medium intense bands at 3290 and 3350 cm⁻¹, as in the case of Ni(CQdpNH₂)₂[B(C₆H₅)₄]₂.

In an attempt to confirm the presence of the various ligands in this nickel complex, it was dissolved in d-CHCl₃ containing a few drops of d₄-MeOH and KCN. After filtering off the cyano nickel complex which formed, the ¹H NMR spectrum of the resulting solution indicated the presence of CQM⁻, H₂NdpNH₂ as well as $B(C_6H_5)_4^-$ and free MeOH. This spectrum suggested that both CQM⁻ and H₂NdpNH₂ are present as ligands in the complex. The presence of OH⁻ in the complex was deduced from the analytical results and the overall charge required by the conductivity data.

A possible structure for the complex would be one in which the two Ni atoms are bridged by an OH⁻ group and possibly by another ligand or donor group.

Although it was expected that HCQM might react with H_2NdpNH_2 to yield a Schiff base complex of the type, $[Ni(HCQEdpCQE)(CH_3CN)_2]^+$, formed in the analogous reaction with HCQE, Schiff base condensation with HCQM does not occur. This is presumably prevented for steric reasons by the methyl group at the C-l carbon atom. This is probably the same reason why only the C-3 carbonyl group of CQ condensed with H_2NdpNH_2 to give $Ni(CQdpNH_2)_2^{2^+}$ and $Zn(CQdpNH_2)_2^{2^+}$ rather than forming the macrocyclic complex shown in Figure 3.

REFERENCES AND NOTES

: 1.	Ma, M. S.; Angelici, R. J.; Powell, D.; Jacobson, R. A. J. <u>Am. Chem. Soc. 1978</u> , 100, 7068.
2.	Ma, M. S.; Angelici, R. J. submitted for publication to Inorg. Chem.
3.	Daniel, A.; Pavia, A. A. <u>C. R. Acad. Sc. Paris</u> <u>1966</u> , 263, 643.
4.	Nakamura, A.; Konishi, A.; Otsuka, S. J. <u>Chem. Soc</u> . <u>Dalton Trans. 1979</u> , 488.
5.	Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.
б.	Deutsch, J. L.; Poling, S. M. <u>J. Chem</u> . <u>Educ</u> . <u>1969</u> , 46, 167.
7.	Löliger, J.; Scheffold, R. <u>J. Chem. Educ. 1972</u> , 49, 647.
8.	Crawford, T. H.; Swanson, J. <u>J. Chem</u> . <u>Educ</u> . <u>1971</u> , 48, 382.
9.	Pople, J. A.; Schneider, W. G.; Bernstein, H. J. "High Resolution Nuclear Magnetic Resonance", McGraw Hill: New York, 1959; Chapter 2.
10.	Evans, W. C.; Ridgion, J. M.; Simonsen, J. L. <u>J</u> . <u>Chem</u> . <u>Soc</u> . <u>1934</u> , 137.
11.	Forster, M. O.; Rao, K. A. N. <u>J. Chem. Soc. 1926</u> , 2670.
12.	Forster, M. O.; Spinner, H. J. Chem. Soc. 1912, 1340.
13.	Uhlig, Von E.; Friedrich, M. Z. <u>Anorg. Allg. Chem</u> . <u>1964</u> , 343, 299.
14.	Geary, W. J. <u>Coord. Chem. Rev. 1971</u> , 7, 81.
15.	Ablov, A. V.; Zubarev, V. N. <u>Russ. J. Inorg</u> . <u>Chem</u> . <u>1968</u> , 13, 1563.
16.	Ablov, A. V.; Chapurina, L. F.; Belichuk, N. I. Russ. J. Inorg. Chem. 1965, 10, 643.

- 17. Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Third Edition, John Wiley and Sons: New York, 1978.
- Charalambous, J.; Frazer, M. J.; Taylor, F. B. J. Chem. Soc. A 1971, 602.
- 19. Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", Third Edition, Interscience: New York, 1972.
- 20. Reedijk, J.; Zuur, A. P.; Groeneveld, W. L. <u>Rec.</u> <u>Trav. Chim. 1967</u>, 86, 1127.

.

SUMMARY

The present study has shown that camphorquinonedioxime has interesting properties as a ligand. It is not only capable of being a bidentate ligand but a monodentate ligand as well. In the complexes $Pd(\delta-HCQD)_2$, $Ni(\delta - HCQD)_2$ and $Ni(\alpha - HCQD)_2$, the anionic $\delta - HCQD$ and α -HCQD⁻ forms behave as bidentate ligands coordinating to the metal ion via their N and O atoms. An X-ray structural study of Ni(δ -HCQD)₂ suggests that this type of coordination is due to the bicyclic nature of the ligand which causes the C-C-N angles in the chelate ring to become larger so that formation of a 6-membered rather than a 5-membered chelate ring becomes more favorable than it would be in an unstrained system. This mode of coordination is characterized by the presence of both the N-coordinated and O-coordinated v(C=N) absorptions in the IR spectra of these complexes. The β -HCQD ligand, however, coordinates through both N atoms to yield square planar complexes of the type $Pd(\beta-HCQD)_2$, $Pt(\beta-HCQD)_2$ and $Cu(\beta-HCQD)_2 \cdot H_2 0 \cdot 1/2 dioxane$. This mode of coordination is characterized by the presence of only N-coordinated v(C=N) absorptions in the IR spectrum. It is interesting that Cu(II) forms only the N, N-coordinated complex, whereas

the most stable form of the N(II) complex is N,O-bonded. The smaller ionic radius of Cu(II) would presumably favor N,O-coordination which would give the larger 6-membered ring. The preference of Cu(II) for N,N-coordination might be related to the higher M-N bond strength for Cu(II) as compared to Ni(II). The higher Cu-N bond strength apparently more than compensates for the strain in the 5-membered rings of Cu(β -HCQD)₂·H₂O·1/2dioxane. Neutral β -H₂CQD behaves as a bidentate ligand in the complexes Pd(β -H₂CQD)Cl₂, Pt(β -H₂CQD)Cl₂ and Cu(β -H₂CQD)Cl₂ in which β -H₂CQD coordinates to the metal ion by N,N chelation. This type of coordination is characterized by a strong IR absorption for $_{V}$ (C=N) between 1450 and 1400 cm⁻¹.

Evidence from the infrared and proton NMR spectra indicates that α , δ and γ -H₂CQD act as monodentate ligands, coordinating <u>via</u> only one N atom in Pd(α -H₂CQD)₂Cl₂, Pd(δ -H₂CQD)₂Cl₂ and Pd(γ -H₂CQD)₂Cl₂. This type of complex is probably stabilized to some extent by inter- or intramolecular H-bonding, which presumably is also a stabilizing force in the two complexes [Pt(γ -HCQD)(γ -H₂CQD)Cl]₂ and Ni(δ -HCQD)₂(δ -H₂CQD)₂.

In the reaction of Ni(δ -HCQD)₂ or Pd(δ -HCQD)₂ with aqueous AgNO₃ in H₂O/MeOH/CHCl₃, the two complexes
$[Ni(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1/2H_2O \cdot 1.3CHCl_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCL_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1.3CHCL_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1/2H_2O \cdot 1/2H_2O \cdot 1.3CHCL_3 \text{ and } [Pd(\delta - HCQD)_2Ag]_3 \cdot 1/2H_2O \cdot 1$ 1.1CHCl₃, respectively, were obtained. In each case X-ray structural studies indicate that the square planar $M(\delta - HCQD)_{\rho}$ anion complex behaves as a multidentate ligand coordinating to a linear chain of three silver atoms via its 0 and N atoms. The coordination at the metal ion is that of cis N_2O_2 rather than trans N_2O_2 as observed in Ni(δ -HCQD)₂. In these Ni₃Ag₃ and Pd₃Ag₃ hexanuclear clusters, the short Ag-Ag distances, averaging 3.05 and 3.17 Å, respectively, suggest substantial Ag-Ag interactions. Since the reactions of Ni(α -HCQD)₂ and $Pd(\alpha-HCQD)_2$ with aqueous AgNO₃ proceeded in a manner similar to that of Ni(δ -HCQD)₂ and gave the complexes $[Ni(\alpha-HCQD)Ag]\cdot 1/2AgNO_3$ and $[Pd(\alpha-HCQD)_2Ag]\cdot 1/2AgNO_3$, respectively, hexanuclear metal clusters may also be found in these complexes. This type of cluster compound is characterized by the presence of two v(C=N) absorptions at 1610 and 1560 cm⁻¹ in their IR spectra. Similar v(C=N) absorptions are also observed in the IR spectrum of the pyridine adduct $[Ni(\delta - HCQD)_2(Py)_2] \cdot CHCl_3$, suggesting that the δ -HCQD⁻ ligand probably coordinates to Ni(II) through cis N,O chelation.

Nickel(II) complexes of the camphorquinone mono-oxime, (HCQM) and (HCQE) have been prepared and shown to have the

139

composition $[Ni(CQM)(Py)_3(H_2O)] \cdot H_2O$ and $[Ni(CQE)(Py)_3(H_2O)] \cdot$ Their IR spectra indicate that both the carbonyl $1/2H_{2}O_{2}$ O and the oxime N atoms are coordinated to the Ni(II). The Schiff base complex $[Ni(HCQEdpCQE)(CH_3CN)_2]B(C_6H_5)_4$ formed by the reaction between 1,3-diaminopropane and HCQE in the presence of Ni(II) could have 5-membered or 6-membered chelate rings. However a similar Schiff base Ni(II) complex is not obtained when HCQM is substituted for HCQE. A possible explanation for this is the steric interaction between the C_1 methyl of HCQM and 1,3diaminopropane which probably prevents the formation of the Schiff base ligand (HCQMdpCQM). This view is supported by the isolation of the two complexes $Ni(CQdpNH_2)_2[B(C_6H_5)_4]_2$ and $Zn(CQdpNH_2)_2[B(C_6H_5)_4]_2 \cdot CH_3CN$ in which the ligand CQdpNH₂ is obtained by the formation of a Schiff base at the least hindered carbonyl of camphorquinone with 1,3-diaminopropane.

LITERATURE CITED

- 1. Tschugaeff, L. Chem. Ber. 1905, 38, 2520.
- 2. Perrin, D. D. "Organic Complexing Reagents", Interscience Publishers: New York, N.Y., 1964.
- Ohgo, Y.; Natori, Y.; Takeuchi, S.; Yoshimura, J. Chem. Letters 1974, 1327.
- 4. Schrauzer, G. N. <u>Angew. Chem. Int. Edit. Eng.</u> 1976, 15, 417.
- 5. a) Takamiya, K. <u>Gann</u>. <u>1959</u>, 265.
 - b) Carlsson, F. H. H.; Charlson, A. J.; Watton, E. C. <u>Carbohyd. Res. 1974</u>, 36, 359.
- 6. a) Miller, J. S.; Epstein, A. J. <u>Progress Inorg</u>. Chem. 1976, 20, 100.
 - b) Thomas, T. W.; Underhill, A. E. <u>Chem. Soc.</u> <u>Rev. 1972</u>, 1, 99.
- 7. a) Rechani, P. R.; Nakon, R.; Angelici, R. J. Bioinorg. Chem. <u>1976</u>, 5, 329.
 - b) Bedell, S. A.; Rechani, P. R.; Angelici, R. J.; Nakon, R. <u>Inorg. Chem. 1977</u>, 16, 972.
- 8. a) Forster, M. O. J. Chem. Soc. 1913, 103, 666.
 - b) Forster, M. O. J. Chem. Soc. 1903, 83, 514.
- 9. a) Nakamura, A.; Konishi, A.; Tatsuno, Y.; Otsuka, S. J. <u>Am. Chem. Soc. 1978</u>, 100, 3443.
 - b) Nakamura, A.; Konishi, A.; Tsujitani, R.; Kudo, M.; Otsuka, S. J. <u>Am</u>. <u>Chem</u>. <u>Soc</u>. <u>1978</u>, 100, 3449.
- 10. Nakamura, A.; Konishi, A.; Otsuka, S. J. Chem. Soc. Dalton Trans. 1979, 488.
- 11. Bakac, A.; Espenson, J. H. <u>Inorg. Chimica Acta</u> <u>1978</u>, 30, L329.
- 12. Chakravorty, A. Coord. Chem. Rev. 1974, 13, 1.

ACKNOWLEDGEMENTS

I am grateful to Dr. Robert J. Angelici whose genuine concern, guidance and encouragement have made this dissertation possible. A special thanks to Dr. R. A. Jacobson's group, especially to Douglas Powell for his generous help in the crystal structure work and to Denise Wegter for typing the manuscript. I would also like to thank Larry Meiske and Steve Ebner for their many years of friendship. Finally I would like to express my appreciation for the love and support given to me by my father, Wah Chee Ma, and the rest of my family members. Above all, I thank my loving wife, Julie, for her patience, understanding and encouragement throughout my graduate study at Iowa State University.